Tiktoken MCP
Count tokens using OpenAI's tiktoken library.
tiktoken-mcp
An MCP (Model Context Protocol) server that provides token counting functionality using OpenAI's tiktoken library.
Features
- 🔢 Token Counting: Count tokens for any text using various tiktoken encodings
- 💰 Cost Estimation: Estimate token costs for popular AI models (GPT-4, Claude, etc.)
- 🚀 Easy to Use: Run directly with
npx- no installation required - 🔧 Claude Desktop Integration: Seamlessly integrates with Claude Desktop app
Installation
You can run this MCP server directly using npx:
npx tiktoken-mcp
Or install it globally:
npm install -g tiktoken-mcp
Prerequisites
- Node.js 16 or higher
- Python 3.6 or higher
- pip (Python package manager)
The tiktoken Python library will be automatically installed when you first run the package.
Available Tools
count_tokens
Count tokens in text using various tiktoken encodings.
Parameters:
text(required): The text to count tokens formodel(optional): The encoding model to use. Options: 'cl100k_base' (default), 'p50k_base', 'p50k_edit', 'r50k_base'
estimate_cost
Estimate token costs for various AI models.
Parameters:
text(required): The text to estimate cost formodel(required): The model to estimate cost for. Options: 'gpt-4', 'gpt-4-turbo', 'gpt-3.5-turbo', 'claude-3-opus', 'claude-3-sonnet', 'claude-3-haiku'
Claude Desktop Configuration
To use this MCP server with Claude Desktop, add the following to your Claude configuration file:
macOS
Location: ~/Library/Application Support/Claude/claude_desktop_config.json
Windows
Location: %APPDATA%\Claude\claude_desktop_config.json
Configuration
{
"mcpServers": {
"tiktoken": {
"command": "npx",
"args": ["tiktoken-mcp"]
}
}
}
After adding this configuration, restart Claude Desktop. You should then be able to use the token counting tools in your conversations.
Example Usage in Claude
Once configured, you can use the tools like this:
- "Count the tokens in this text: 'Hello, world!'"
- "Estimate the cost of this prompt for GPT-4"
- "How many tokens are in this paragraph using the cl100k_base encoding?"
Example Output
Token Counting:
Token count: 13
Model: cl100k_base
First 100 token IDs: 9906, 11, 1917, 0, 498, 1097, 701, 30, 220, 17, ...
Cost Estimation:
Token count: 150
Model: gpt-4
Estimated input cost: $0.004500
Estimated output cost: $0.009000
Total cost (if used as both input and output): $0.013500
How It Works
This MCP server uses Python's tiktoken library under the hood to accurately count tokens. It supports multiple encoding models:
- cl100k_base: Used by GPT-4, GPT-3.5-turbo, and newer models
- p50k_base: Used by Codex models
- p50k_edit: Used by edit models
- r50k_base: Used by GPT-3 models
Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
Issues
If you encounter any problems, please file an issue on the GitHub repository.
License
MIT
Related Servers
Scout Monitoring MCP
sponsorPut performance and error data directly in the hands of your AI assistant.
Alpha Vantage MCP Server
sponsorAccess financial market data: realtime & historical stock, ETF, options, forex, crypto, commodities, fundamentals, technical indicators, & more
MetaMCP
A proxy server that combines multiple MCP servers into a single endpoint, routing requests to the appropriate underlying server.
Starwind UI
A server providing tools for developers working with Starwind UI components.
Volatility3 MCP Server
Perform advanced memory forensics analysis using Volatility3 via a conversational interface. Requires user-specified memory dump files.
Figma
Interact with Figma files to view, comment on, and analyze designs.
Shell Command MCP Server
Execute pre-configured and secure shell commands via a Go-based MCP server.
MCP POC
A proof-of-concept MCP server built with Node.js and TypeScript, compatible with Claude Desktop.
Flux Schnell MCP Server
Generate images using the Flux Schnell model via the Replicate API.
API Tester
This MCP Server accepts swagger/postman documents as input. It then generates API & Load test scenarios, executes the tests and generates the execution report.
Linear Regression MCP
Train a Linear Regression model by uploading a CSV dataset file, demonstrating an end-to-end machine learning workflow.
MCP Reasoner
A reasoning engine with multiple strategies, including Beam Search and Monte Carlo Tree Search.