Claude Conversation Memory System
Provides searchable local storage for Claude conversation history, enabling context retrieval during sessions.
Code Quality
Overall Scorecard
Code Quality
Security
Claude Conversation Memory System
A Model Context Protocol (MCP) server that provides searchable local storage for Claude conversation history, enabling context retrieval during current sessions.
Features
- š Full-text search across conversation history
- š·ļø Automatic topic extraction and categorization
- š Weekly summaries with insights and patterns
- šļø Organized file storage by date and topic
- ā” Fast retrieval with relevance scoring
- š MCP integration for seamless Claude Desktop access
Quick Start
Prerequisites
- Python 3.11+ (tested with 3.11.12)
- Ubuntu/WSL environment recommended
- Claude Desktop (for MCP integration)
Installation
Option 1: Install with Claude Code (Recommended)
Quick Install - Copy and paste this into Claude Code:
claude mcp add --transport stdio claude-memory -- sh -c "cd $HOME/Code/claude-memory-mcp && python3 src/server_fastmcp.py"
Important: Replace $HOME/Code/claude-memory-mcp with the actual path where you cloned this repository.
Examples for different locations:
# If cloned to ~/Code/claude-memory-mcp (default)
claude mcp add --transport stdio claude-memory -- sh -c "cd $HOME/Code/claude-memory-mcp && python3 src/server_fastmcp.py"
# If cloned to ~/projects/claude-memory-mcp
claude mcp add --transport stdio claude-memory -- sh -c "cd $HOME/projects/claude-memory-mcp && python3 src/server_fastmcp.py"
# If cloned to ~/dev/claude-memory-mcp
claude mcp add --transport stdio claude-memory -- sh -c "cd $HOME/dev/claude-memory-mcp && python3 src/server_fastmcp.py"
What this does:
--transport stdio: Uses standard input/output for local processesclaude-memory: Server identifier name--: Separates Claude CLI flags from the server commandsh -c "cd ... && python3 ...": Changes to project directory before running server
This adds the MCP server to your Claude Desktop configuration automatically.
Documentation: https://code.claude.com/docs/en/mcp
Option 2: Manual Installation
-
Clone the repository:
git clone https://github.com/yourusername/claude-memory-mcp.git cd claude-memory-mcp -
Set up virtual environment:
python3 -m venv .venv source .venv/bin/activate -
Install dependencies:
pip install -e .This installs the package in editable mode along with all required dependencies:
mcp[cli]>=1.9.2- Model Context Protocoljsonschema>=4.0.0- JSON schema validationaiofiles>=24.1.0- Async file operations
-
Test the system:
python3 tests/validate_system.py
Basic Usage
Standalone Testing
# Test core functionality
python3 tests/standalone_test.py
MCP Server Mode
# Run as MCP server (from project root)
python3 src/server_fastmcp.py
# Or from src directory
cd src && python3 server_fastmcp.py
Bulk Import
# Import conversations from JSON export
python3 scripts/bulk_import_enhanced.py your_conversations.json
MCP Tools
The system provides three main tools:
search_conversations(query, limit=5)
Search through stored conversations by topic or content.
Example:
search_conversations("terraform azure deployment")
search_conversations("python debugging", limit=10)
add_conversation(content, title, date)
Add a new conversation to the memory system.
Example:
add_conversation(
content="Discussion about MCP server setup...",
title="MCP Server Configuration",
date="2025-06-01T14:30:00Z"
)
generate_weekly_summary(week_offset=0)
Generate insights and patterns from conversations.
Example:
generate_weekly_summary() # Current week
generate_weekly_summary(1) # Last week
Architecture
~/claude-memory/
āāā conversations/
ā āāā 2025/
ā ā āāā 06-june/
ā ā āāā 2025-06-01_topic-name.md
ā āāā index.json # Search index
ā āāā topics.json # Topic frequency
āāā summaries/
āāā weekly/
āāā week-2025-06-01.md
Configuration
Claude Desktop Integration
Add to your Claude Desktop MCP config:
{
"mcpServers": {
"claude-memory": {
"command": "python",
"args": ["/path/to/claude-memory-mcp/server_fastmcp.py"]
}
}
}
Storage Location
Default storage: ~/claude-memory/
Override with environment variable:
export CLAUDE_MEMORY_PATH="/custom/path"
Logging Configuration
Log Format
Switch between human-readable text logs (default) and structured JSON logs for production:
# JSON format (for production log aggregation)
export CLAUDE_MCP_LOG_FORMAT=json
# Text format (default, for development)
export CLAUDE_MCP_LOG_FORMAT=text
JSON Log Example:
{
"timestamp": "2025-01-15T10:30:45",
"level": "INFO",
"logger": "claude_memory_mcp",
"function": "add_conversation",
"line": 145,
"message": "Added conversation successfully",
"context": {
"type": "performance",
"duration_seconds": 0.045,
"conversation_id": "conv_abc123"
}
}
JSON logging is ideal for:
- Production deployments with log aggregation (Datadog, ELK, CloudWatch)
- Automated monitoring and alerting
- Structured log analysis and querying
- Performance tracking and debugging
See docs/json-logging.md for detailed JSON logging documentation.
File Structure
claude-memory-mcp/
āāā server_fastmcp.py # Main MCP server
āāā bulk_import_enhanced.py # Conversation import tool
āāā validate_system.py # System validation
āāā standalone_test.py # Core functionality test
āāā import_workflow.sh # Automated import process
āāā requirements.txt # Python dependencies
āāā IMPORT_GUIDE.md # Detailed import instructions
āāā README.md # This file
Performance
Performance validated through automated benchmarks:
- Search Speed: 0.05s average (159 conversations)
- Capacity: Tested with 159 conversations (7.8MB)
- Memory Usage: 40MB peak during operations
- Accuracy: 80%+ search relevance
- Write Performance: 1-12MB/s throughput
Last benchmarked: June 2025 | Detailed Report
Note for Developers: The development team uses performance benchmarks that create a ~/claude-memory-test directory for isolated testing. Normal MCP usage does NOT create this directory - it only uses ~/claude-memory/. If you see ~/claude-memory-test, it was created by running development scripts and can be safely deleted.
Search Examples
# Technical topics
search_conversations("terraform azure")
search_conversations("mcp server setup")
search_conversations("python debugging")
# Project discussions
search_conversations("interview preparation")
search_conversations("product management")
search_conversations("architecture decisions")
# Specific problems
search_conversations("dependency issues")
search_conversations("authentication error")
search_conversations("deployment configuration")
Development
Adding New Features
- Topic Extraction: Modify
_extract_topics()inConversationMemoryServer - Search Algorithm: Enhance
search_conversations()method - Summary Generation: Improve
generate_weekly_summary()logic
Testing
# Run validation suite
python3 tests/validate_system.py
# Test individual components
python3 tests/standalone_test.py
# Run full test suite with coverage
python3 -m pytest tests/ --ignore=tests/standalone_test.py --cov=src --cov-report=term
# Import test data
python3 scripts/bulk_import_enhanced.py test_data.json --dry-run
Test Data Storage (Developers Only): If you run performance benchmarks or test data generators, they create a ~/claude-memory-test directory to isolate test data from your production ~/claude-memory directory. This is only for development/testing - normal MCP usage does not create this directory.
To clean up test data after running benchmarks:
rm -rf ~/claude-memory-test
Or using the Makefile cleanup target:
make clean-test-data
Troubleshooting
Common Issues
MCP Import Errors:
pip install mcp[cli] # Include CLI extras
Search Returns No Results:
- Check conversation indexing:
ls ~/claude-memory/conversations/index.json - Verify file permissions
- Run validation:
python3 tests/validate_system.py
Weekly Summary Timezone Errors:
- Ensure all datetime objects use consistent timezone handling
- Recent fix addresses timezone-aware vs naive comparison
System Requirements
- Python: 3.11+ (tested with 3.11.12)
- Disk Space: ~10MB per 100 conversations
- Memory: <100MB RAM usage
- OS: Ubuntu/WSL recommended, macOS/Windows compatible
Contributing
- Fork the repository
- Create a feature branch:
git checkout -b feature-name - Commit changes:
git commit -am 'Add feature' - Push to branch:
git push origin feature-name - Submit a Pull Request
License
MIT License - see LICENSE file for details
Acknowledgments
- Built with Model Context Protocol (MCP)
- Designed for Claude Desktop integration
- Inspired by the need for persistent conversation context
Status: Production ready ā
Last Updated: June 2025
Version: 1.0.0
Related Servers
PostgreSQL
Provides read-only access to PostgreSQL databases, enabling schema inspection and query execution.
CData SuiteCRM Server
A read-only MCP server for querying live SuiteCRM data using the CData JDBC Driver.
MCP Memory Server
An advanced memory system for Claude Desktop that provides persistent memory using MCP. Requires an Azure Cosmos DB account and an OpenAI API key.
Solana Launchpads MCP
Tracks daily activity and graduate metrics across multiple Solana launchpads using the Dune Analytics API.
MCP RAN POC
An MCP server for querying databases and managing Kubernetes clusters.
Odoo Accounting MCP Server
Integrates with Odoo Accounting via XML-RPC, allowing AI tools to query and analyze account journal entries for auditing purposes.
MSSQL MCP Server
Interact with Microsoft SQL Server (MSSQL) databases. List tables, read data, and execute SQL queries with controlled access.
Project Synapse MCP Server
Transforms raw text into interconnected knowledge graphs and generates insights using a Neo4j database.
Outreach.io by CData
A read-only MCP server for querying live data from Outreach.io using the CData JDBC Driver.
Ashare-MCP
A stock market data service for querying A-share market data from Sina and Tencent Finance.