Claude Conversation Memory System
Provides searchable local storage for Claude conversation history, enabling context retrieval during sessions.
Code Quality
Overall Scorecard
Code Quality
Security
Claude Conversation Memory System
A Model Context Protocol (MCP) server that provides searchable local storage for Claude conversation history, enabling context retrieval during current sessions.
Features
- ๐ Full-text search across conversation history
- ๐ท๏ธ Automatic topic extraction and categorization
- ๐ Weekly summaries with insights and patterns
- ๐๏ธ Organized file storage by date and topic
- โก Fast retrieval with relevance scoring
- ๐ MCP integration for seamless Claude Desktop access
Quick Start
Prerequisites
- Python 3.11+ (tested with 3.11.12)
- Ubuntu/WSL environment recommended
- Claude Desktop (for MCP integration)
Installation
-
Clone the repository:
git clone https://github.com/yourusername/claude-memory-mcp.git cd claude-memory-mcp
-
Set up virtual environment:
python3 -m venv .venv source .venv/bin/activate
-
Install dependencies:
pip install mcp[cli] # or pip install -r requirements.txt
-
Test the system:
python3 validate_system.py
Basic Usage
Standalone Testing
# Test core functionality
python3 standalone_test.py
MCP Server Mode
# Run as MCP server
python3 server_fastmcp.py
Bulk Import
# Import conversations from JSON export
python3 bulk_import_enhanced.py your_conversations.json
# Or use the automated workflow
./import_workflow.sh
MCP Tools
The system provides three main tools:
search_conversations(query, limit=5)
Search through stored conversations by topic or content.
Example:
search_conversations("terraform azure deployment")
search_conversations("python debugging", limit=10)
add_conversation(content, title, date)
Add a new conversation to the memory system.
Example:
add_conversation(
content="Discussion about MCP server setup...",
title="MCP Server Configuration",
date="2025-06-01T14:30:00Z"
)
generate_weekly_summary(week_offset=0)
Generate insights and patterns from conversations.
Example:
generate_weekly_summary() # Current week
generate_weekly_summary(1) # Last week
Architecture
~/claude-memory/
โโโ conversations/
โ โโโ 2025/
โ โ โโโ 06-june/
โ โ โโโ 2025-06-01_topic-name.md
โ โโโ index.json # Search index
โ โโโ topics.json # Topic frequency
โโโ summaries/
โโโ weekly/
โโโ week-2025-06-01.md
Configuration
Claude Desktop Integration
Add to your Claude Desktop MCP config:
{
"mcpServers": {
"claude-memory": {
"command": "python",
"args": ["/path/to/claude-memory-mcp/server_fastmcp.py"]
}
}
}
Storage Location
Default storage: ~/claude-memory/
Override with environment variable:
export CLAUDE_MEMORY_PATH="/custom/path"
File Structure
claude-memory-mcp/
โโโ server_fastmcp.py # Main MCP server
โโโ bulk_import_enhanced.py # Conversation import tool
โโโ validate_system.py # System validation
โโโ standalone_test.py # Core functionality test
โโโ import_workflow.sh # Automated import process
โโโ requirements.txt # Python dependencies
โโโ IMPORT_GUIDE.md # Detailed import instructions
โโโ README.md # This file
Performance
Performance validated through automated benchmarks:
- Search Speed: 0.05s average (159 conversations)
- Capacity: Tested with 159 conversations (7.8MB)
- Memory Usage: 40MB peak during operations
- Accuracy: 80%+ search relevance
- Write Performance: 1-12MB/s throughput
Last benchmarked: June 2025 | Detailed Report
Search Examples
# Technical topics
search_conversations("terraform azure")
search_conversations("mcp server setup")
search_conversations("python debugging")
# Project discussions
search_conversations("interview preparation")
search_conversations("product management")
search_conversations("architecture decisions")
# Specific problems
search_conversations("dependency issues")
search_conversations("authentication error")
search_conversations("deployment configuration")
Development
Adding New Features
- Topic Extraction: Modify
_extract_topics()
inConversationMemoryServer
- Search Algorithm: Enhance
search_conversations()
method - Summary Generation: Improve
generate_weekly_summary()
logic
Testing
# Run validation suite
python3 validate_system.py
# Test individual components
python3 standalone_test.py
# Import test data
python3 bulk_import_enhanced.py test_data.json --dry-run
๐งช Comprehensive Testing Framework
This project includes a professional testing framework based on established methodologies including Heuristic Test Strategy Model (HTSM), Session-Based Test Management (SBTM), and Rapid Software Testing (RST).
Quick Testing
Priority Testing (2.5 hours):
- Security & Data Protection (90 min) - Validate file system security and data exposure risks
- FastMCP Integration (60 min) - Verify Claude Desktop compatibility and protocol compliance
Complete Testing (6 hours total):
- Add Core Functionality (90 min), Edge Cases (60 min), and Performance (60 min) sessions
Testing Documentation
Document | Purpose |
---|---|
TESTING.md | Complete testing framework guide and methodology |
tasks/test-strategy.md | Risk-based test strategy for this project |
tasks/session-charters.md | 5 focused exploratory testing sessions |
tasks/test-execution-guide.md | Step-by-step execution coordination |
tasks/structured-tests/ | Systematic test procedures (security, integration, functional) |
Reusable Testing Library
The tasks/prompt-*.md
files contain reusable prompts for generating testing documentation for other projects:
prompt-test-strategy.md
- Generate test strategies using HTSMprompt-session-charters.md
- Create SBTM exploratory session chartersprompt-security-tests.md
- Generate security test suitesprompt-integration-tests.md
- Create integration/API test proceduresprompt-functional-tests.md
- Generate functional validation tests
Usage: Provide context to Claude with any prompt to generate testing documentation for your projects.
Testing Methodology
Risk-Based Priorities:
- HIGH: Security (data protection, file system security)
- CRITICAL: Compatibility (FastMCP, Claude Desktop integration)
- MEDIUM: Reliability (core functionality, error handling)
- LOW: Performance (response times, scalability)
Session-Based Approach:
- Time-boxed exploratory sessions (60-90 minutes)
- Charter-driven focus with discovery flexibility
- Systematic documentation using SBTM templates
- Risk-based prioritization throughout
See TESTING.md for complete methodology details and execution guidance.
Troubleshooting
Common Issues
MCP Import Errors:
pip install mcp[cli] # Include CLI extras
Search Returns No Results:
- Check conversation indexing:
ls ~/claude-memory/conversations/index.json
- Verify file permissions
- Run validation:
python3 validate_system.py
Weekly Summary Timezone Errors:
- Ensure all datetime objects use consistent timezone handling
- Recent fix addresses timezone-aware vs naive comparison
System Requirements
- Python: 3.11+ (tested with 3.11.12)
- Disk Space: ~10MB per 100 conversations
- Memory: <100MB RAM usage
- OS: Ubuntu/WSL recommended, macOS/Windows compatible
Contributing
- Fork the repository
- Create a feature branch:
git checkout -b feature-name
- Commit changes:
git commit -am 'Add feature'
- Push to branch:
git push origin feature-name
- Submit a Pull Request
License
MIT License - see LICENSE file for details
Acknowledgments
- Built with Model Context Protocol (MCP)
- Designed for Claude Desktop integration
- Inspired by the need for persistent conversation context
Status: Production ready โ
Last Updated: June 2025
Version: 1.0.0
Related Servers
ADO.NET MCP Server
A C# MCP server for interacting with databases via ADO.NET, compatible with Virtuoso.
MCP Firebird
An MCP server for Firebird SQL databases, enabling LLMs to securely access, analyze, and manipulate database content.
Crunchbase
Access Crunchbase data for business information and insights. Requires a Crunchbase API key.
STRING-MCP
Interact with the STRING protein-protein interaction database API.
Theta Health MCP Server
Connect your health data to AI assistants like Cursor, Claude, and Windsurf.
Airtable
Read and write access to Airtable databases.
NEPSE Stock Data MCP Server
Access comprehensive stock market data from the Nepal Stock Exchange (NEPSE) via the ShareBazaar API.
Tinybird
Interact with Tinybird serverless ClickHouse platform
Eka MCP Server
Access medical knowledge-bases and drug information from eka.care. Requires API credentials.
InterSystems IRIS
Interact with and automate InterSystems IRIS databases.