Phabricator

Interact with Phabricator for task management and code review workflows.

Phabricator MCP Server

A comprehensive Model Context Protocol (MCP) server that enables AI assistants to interact intelligently with Phabricator for advanced task management and code review workflows.

โœจ Features

๐Ÿ”‘ Personal Authentication

  • Per-User Authentication: Configure your personal Phabricator API token in your MCP client
  • User Attribution: Comments and reviews appear under YOUR name instead of a shared service account
  • Flexible Configuration: Supports both personal tokens and shared environment variables
  • Standard MCP Integration: Follows MCP ecosystem best practices for authentication

๐ŸŽฏ Core Task Management

  • Task Operations: View task details, read comments, add comments, subscribe users to tasks
  • Rich Formatting: Well-structured output with task metadata, status, priority, and full comment threads

๐Ÿ” Advanced Code Review

  • Differential Management: View revisions, read comments, approve/reject code changes
  • Intelligent Review Feedback: Analyze comments with surrounding code context for actionable insights
  • Inline Comments: Add targeted feedback to specific lines in code reviews
  • Code Context Analysis: Correlate review comments with actual code changes and locations

๐Ÿš€ Server Architecture

  • HTTP/SSE Transport: FastMCP-based server for reliable production use (default on port 8932)
  • stdio Transport: Legacy support for direct MCP client integration
  • Comprehensive API: 11 specialized tools for complete Phabricator workflow automation

๐Ÿง  Smart Review Analysis

  • Comment-Code Correlation: Intelligently link review feedback to specific code locations
  • Contextual Code Display: Show surrounding code lines for better understanding
  • Action Item Generation: Categorize feedback into actionable to-do items
  • Priority Classification: Organize comments by Issues โ†’ Suggestions โ†’ Nits โ†’ Other

๐Ÿ›  Available Tools

Task Management (3 tools)

  • get-task - Get comprehensive task details with comments
  • add-task-comment - Add comments to tasks
  • subscribe-to-task - Subscribe users to task notifications

Code Review (8 tools)

  • get-differential - Get basic differential revision details
  • get-differential-detailed - Get comprehensive review with code changes
  • get-review-feedback - : Get intelligent review analysis with code context
  • add-differential-comment - Add general comments to reviews
  • add-inline-comment - : Add targeted inline comments to specific code lines
  • accept-differential - Accept/approve differential revisions
  • request-changes-differential - Request changes with optional feedback
  • subscribe-to-differential - Subscribe users to review notifications

๐Ÿ“‹ Prerequisites

  • Python 3.8+
  • Phabricator instance with API access
  • API token from Phabricator (Settings โ†’ Conduit API Tokens)

โšก Quick Start

Automated Setup (Recommended)

# Clone and navigate
git clone https://github.com/YushengAuggie/phabricator-mcp-server.git
cd phabricator-mcp-server

# Configure credentials
echo "PHABRICATOR_TOKEN=your-32-character-api-token" > .env
echo "PHABRICATOR_URL=https://your-phabricator-instance.com/api/" >> .env

# Start server (handles all setup automatically)
python3 start.py --mode http

The server starts on http://localhost:8932 with automatic dependency management.

Manual Setup

# Create virtual environment
python3 -m venv venv
source venv/bin/activate  # Windows: venv\Scripts\activate

# Install with dependencies
pip install -e .

# Start HTTP server
python src/servers/http_server.py

# Or start stdio server
python src/servers/stdio_server.py

โš™๏ธ Configuration

Authentication Configuration

The server supports hybrid authentication with two modes that work seamlessly together:

  1. Personal API Token (Recommended): Pass your personal token through MCP client configuration for user attribution
  2. Environment Variable Fallback: Use a shared service account token via environment variables

๐Ÿ”‘ Getting Your API Token:

  1. Go to your Phabricator instance โ†’ Settings โ†’ API Tokens
  2. Create a new token with appropriate permissions
  3. Copy the 32-character token for use in configuration

๐ŸŒ Finding Your Phabricator URL: Your Phabricator API URL should end with /api/ and typically looks like:

  • https://phabricator.example.com/api/
  • https://phab.yourcompany.com/api/
  • https://your-domain.phabricator.com/api/

If unsure, check your Phabricator instance's main page - the URL is usually [your-base-url]/api/

๐Ÿš€ MCP Client Configuration

HTTP/SSE Transport (Recommended)

The server automatically detects your environment configuration:

Claude Code CLI (Easiest):

claude mcp add --transport sse phabricator http://localhost:8932/sse \
  --env "PHABRICATOR_TOKEN=api-xxxxxxx" \
  --env "PHABRICATOR_URL=https://example.com/api/"

Replace api-xxxxxxx with your actual API token and https://example.com/api/ with your Phabricator instance URL

Manual Configuration:

{
  "mcpServers": {
    "phabricator": {
      "url": "http://localhost:8932/sse",
      "env": {
        "PHABRICATOR_TOKEN": "api-xxxxxxx",
        "PHABRICATOR_URL": "https://example.com/api/"
      }
    }
  }
}

stdio Transport

For Claude Desktop and direct MCP integration:

{
  "mcpServers": {
    "phabricator": {
      "command": "python",
      "args": ["path/to/phabricator-mcp-server/start.py"],
      "cwd": "path/to/phabricator-mcp-server",
      "env": {
        "PHABRICATOR_TOKEN": "api-xxxxxxx",
        "PHABRICATOR_URL": "https://example.com/api/"
      }
    }
  }
}

Multiple Authentication Options

The server supports multiple ways to authenticate:

  1. Personal Token in Tools: Some tools accept an api_token parameter
  2. Environment Variables: Set PHABRICATOR_TOKEN in MCP client config
  3. Fallback Token: Create .env file in server directory

Priority Order: Personal token โ†’ MCP environment โ†’ Server .env file

Server Environment Variables (Fallback)

Create .env file in project root for fallback authentication:

# Fallback: Shared service account token  
PHABRICATOR_TOKEN=your-shared-token-here

# Optional: Custom Phabricator URL (auto-detected from token by default)
# PHABRICATOR_URL=https://your-phabricator-instance.com/api/

# Optional: Custom server port (default: 8932)
# MCP_SERVER_PORT=8932

๐Ÿ”ง Advanced Configuration

User Attribution

  • Personal tokens: Comments appear under YOUR name
  • Shared tokens: Comments appear under the service account name
  • Mixed usage: Different tools can use different tokens

Token Security

  • Tokens are passed securely through MCP protocol
  • No tokens stored on disk (except optional .env fallback)
  • Each client can use their own personal token

Troubleshooting Authentication

If you see authentication errors:

  1. Check token validity: Test your token directly with Phabricator API
  2. Verify configuration: Ensure PHABRICATOR_TOKEN is set correctly
  3. Check environment: Run server with debugging to see environment variables
  4. Use personal token: Pass api_token parameter directly to tools

Debugging Commands:

# Check if server can start with your token
PHABRICATOR_TOKEN=your-token python start.py --mode http

# Test token manually
curl -d "api.token=your-token" https://your-phabricator-instance.com/api/user.whoami

๐Ÿ’ป Usage

With Claude Desktop

Add to Claude Desktop configuration (claude_desktop_config.json):

{
  "mcpServers": {
    "phabricator": {
      "command": "python",
      "args": ["path/to/phabricator-mcp-server/start.py", "--mode", "stdio"],
      "cwd": "path/to/phabricator-mcp-server"
    }
  }
}

With HTTP/SSE Transport

{
  "mcpServers": {
    "phabricator": {
      "url": "http://localhost:8932/sse"
    }
  }
}

Programmatic Usage

from src.core.client import PhabricatorClient

# Initialize client
client = PhabricatorClient(
    token="your-32-char-api-token",
    host="https://your-instance.com/api/"
)

# Get enhanced review feedback with code context
feedback = await client.get_review_feedback_with_code_context("12345", context_lines=7)

# Add inline comment to specific line
await client.add_inline_comment("12345", "src/file.py", 42, "Consider using a more descriptive variable name")

# Get task with full context
task = await client.get_task("6789")
comments = await client.get_task_comments("6789")

Example: AI-Powered Code Review

# Get intelligent review feedback
feedback_data = await client.get_review_feedback_with_code_context("D123", context_lines=5)

# The feedback includes:
# - Comments correlated with specific code locations
# - Surrounding code context for each comment
# - Action items categorized by priority
# - File-by-file breakdown of changes

๐Ÿงช Development & Testing

Install Development Dependencies

# Install with dev dependencies
pip install -e ".[dev]"

# Or with uv (faster)
uv pip install -e ".[dev]"

Run Tests

# Run all tests with our test runner
python run_tests.py

# Run specific test suites
python -m pytest src/tests/test_tool_completeness.py -v
python -m pytest src/tests/test_tool_integration.py -v

# Run with coverage
python -m pytest --cov=src --cov-report=html

Code Quality

# Format code
black src/
ruff check src/ --fix

# Type checking
mypy src/

# Run all quality checks
black src/ && ruff check src/ && mypy src/ && python run_tests.py

Testing Features

  • Tool Completeness: Validates all 11 tools are properly configured
  • Integration Testing: Tests all tools with realistic mock data
  • Error Handling: Validates graceful failure modes
  • Argument Validation: Ensures correct required/optional parameters
  • Mock Phabricator: No API calls needed for testing

๐ŸŽฏ Advanced Features

Intelligent Review Feedback Analysis

The get-review-feedback tool provides advanced analysis:

# Returns structured feedback with:
{
    "revision": {...},              # Revision metadata
    "review_feedback": [            # Enhanced comment analysis
        {
            "comment": "Fix this issue",
            "author": "reviewer-phid",
            "type": "inline",
            "code_context": {
                "file": "src/example.py",
                "target_line": 42,
                "hunk_info": "@@ -40,7 +40,7 @@",
                "lines": [           # Surrounding code context
                    {"line_number": 40, "content": "def example():", "is_target": False},
                    {"line_number": 41, "content": "    # TODO: fix this", "is_target": False},
                    {"line_number": 42, "content": "    return broken_code", "is_target": True},
                    {"line_number": 43, "content": "    # end function", "is_target": False},
                ]
            },
            "primary_file": "src/example.py",
            "primary_line": 42
        }
    ],
    "summary": "Analysis summary with actionable insights",
    "total_comments": 5,
    "comments_with_context": 3
}

Smart Comment-Code Correlation

  • Keyword Extraction: Identifies variable names, function names in comments
  • Code Location Mapping: Links comments to specific files and line numbers
  • Context Enrichment: Shows surrounding code for better understanding
  • Priority Classification: Organizes feedback by importance

๐Ÿค Contributing

We welcome contributions! Here's how to get started:

# Fork and clone the repository
git clone https://github.com/your-username/phabricator-mcp-server.git
cd phabricator-mcp-server

# Create feature branch
git checkout -b feature/amazing-feature

# Make changes and test
python run_tests.py

# Commit and push
git commit -m 'feat: add amazing feature'
git push origin feature/amazing-feature

# Open a Pull Request

Development Guidelines

  • Follow existing code style (black + ruff)
  • Add tests for new features
  • Update documentation as needed
  • Ensure all quality checks pass

๐Ÿ“„ License

MIT License - see LICENSE file for details.

๐Ÿ”— Links

Related Servers