LLM API Benchmark MCP Server
Benchmark LLM APIs for throughput and Time To First Token (TTFT) under various concurrency levels.
LLM API Benchmark MCP Server
This project provides an MCP (Model Context Protocol) server designed to benchmark Large Language Model (LLM) APIs. It allows you to measure various performance metrics such as generation throughput, prompt throughput, and Time To First Token (TTFT) for your LLM endpoints.
Features
- Comprehensive Benchmarking: Measure key performance indicators like generation throughput, prompt throughput, and Time To First Token (TTFT).
- Flexible Deployment: Supports both remote SSE server for quick trials and local deployment via stdio or SSE transport.
- Customizable Benchmarks: Configure various parameters for your LLM API benchmarks, including concurrency levels, model names, token limits, and more.
- Detailed Output: Provides structured JSON output with aggregated and distributed metrics for in-depth analysis.
- Easy Integration: Designed as an MCP server for seamless integration with MCP clients.
Table of Contents
Prerequisites
This project uses uv for environment management. Please ensure you have uv installed on your system.
Install uv
Refer to the official uv documentation for installation methods.
Quick Start
You can experience this MCP server through a remote SSE server for quick trials or deploy it locally using either stdio or SSE transport.
Demo (Recommended for Simple Trials)
If you wish to quickly try out the MCP server, a public SSE server is available. You can configure your MCP client to connect to it directly.
Note: While this project does not collect your API endpoint or API key, please be cautious about potential exposure risks when using remote services.
MCP Configuration:
{
"mcpServers": {
"llm-benchmark-sse": {
"url": "https://llm-api-benchmark.pikoo.de/sse"
}
}
}
Local Deployment (stdio)
This is the recommended method for local deployment.
MCP Configuration:
{
"mcpServers": {
"llm-benchmark-stdio":{
"command": "uvx",
"args": [
"--refresh",
"--quiet",
"llm-api-benchmark-mcp-server"
]
}
}
}
Local Deployment (sse)
Alternatively, you can deploy the server locally using SSE transport.
-
Clone the repository and navigate into it:
git clone https://github.com/Yoosu-L/llm-api-benchmark-mcp-server.git cd llm-api-benchmark-mcp-server -
Modify
src/llm_api_benchmark_mcp_server/main.py: Comment out the stdio transport section and uncomment the SSE transport section. You can also change themcp.settings.portto your desired port. -
Build and Start the MCP Server (SSE):
uv build uv tool install dist/llm_api_benchmark_mcp_server-0.1.3-py3-none-any.whl # path may varies llm-api-benchmark-mcp-server -
Configure MCP Client: Update your MCP client configuration to connect to your local SSE server.
{ "mcpServers": { "llm-benchmark-sse": { "url": "http://localhost:47564/sse" } } }
Usage Example
Once the MCP server is configured and running, you can use it to perform LLM API benchmarks.
Example Prompt:
Please help me perform a LLM api benchmark on this address with concurrency levels of 1 and 2. https://my-llm-api-service.com/v1, sk-xxx
Example Output from MCP Tools:
{
"model_name": "gemini-2.0-flash",
"input_tokens": 32,
"max_tokens": 512,
"latency_ms": 2.46,
"benchmark_results": [
{
"concurrency": 1,
"generation_throughput_tokens_per_s": {
"total": 135.74,
"avg": 135.74,
"distribution": {
"max": 135.74,
"p50": 135.74,
"p10": 135.74,
"p1": 135.74,
"min": 135.74
}
},
"prompt_throughput_tokens_per_s": {
"total": 8.48,
"avg": 8.48,
"distribution": {
"max": 8.48,
"p50": 8.48,
"p10": 8.48,
"p1": 8.48,
"min": 8.48
}
},
"ttft_s": {
"avg": 0.41,
"distribution": {
"min": 0.41,
"p50": 0.41,
"p90": 0.41,
"p99": 0.41,
"max": 0.41
}
}
},
{
"concurrency": 2,
"generation_throughput_tokens_per_s": {
"total": 247.6,
"avg": 123.8,
"distribution": {
"max": 124.07,
"p50": 123.53,
"p10": 123.53,
"p1": 123.53,
"min": 123.53
}
},
"prompt_throughput_tokens_per_s": {
"total": 15.52,
"avg": 7.76,
"distribution": {
"max": 7.78,
"p50": 7.74,
"p10": 7.74,
"p1": 7.74,
"min": 7.74
}
},
"ttft_s": {
"avg": 0.68,
"distribution": {
"min": 0.43,
"p50": 0.43,
"p90": 0.94,
"p99": 0.94,
"max": 0.94
}
}
}
],
"output_log": []
}
Benchmark Parameters
The run_llm_benchmark MCP tool accepts the following parameters:
base_url(string, required): Base URL of the OpenAI API endpoint (e.g.,http://localhost:8000/v1).api_key(string, optional, default:sk-dummy): API key for authentication.model(string, optional, default:""): Model to be used for the requests. If not provided, the server will attempt to discover the first available model.prompt(string, optional, default:"Write a long story, no less than 10,000 words, starting from a long, long time ago."): Prompt to be used for generating responses. Ifnum_wordsis provided and greater than 0, random input will be generated instead of using this prompt.num_words(integer, optional, default:0, minimum:0): Number of words for random input. If greater than 0 and the default prompt is used, random input will be generated.concurrency(string, optional, default:"1"): Comma-separated list of concurrency levels (e.g.,"1,2,4,8").max_tokens(integer, optional, default:512, minimum:1): Maximum number of tokens to generate.
License
This project is licensed under the MIT License.
Related Servers
Deephaven MCP
MCP servers for Deephaven to orchestrate data workers and power documentation Q&A with LLMs, enabling AI-driven data workflows.
MCP Code Crosscheck
A server for bias-resistant AI code review using cross-model evaluation.
Image Generation MCP Server
An MCP server for generating images using the Replicate API and the Flux model.
BAMM
Interact with the Borrow Automated Market Maker (BAMM) protocol on the Fraxtal blockchain.
MCP Cat PSQL
An example of a remote, authentication-free MCP server deployable on Cloudflare Workers.
OpenDia
An open-source server that exposes browser functions via MCP, allowing AI models to interact with browser capabilities.
Azure DevOps MCP Server for Cursor
Integrate Azure DevOps with Cursor IDE. Provides over 60 tools using PAT authentication, no CLI needed.
302AI Basic MCP Server
A toolkit for enhancing the fundamental capabilities of large language models.
Taeks MCP Server
An example MCP server designed for deployment on Cloudflare Workers, operating without authentication.
Snak
An agent engine for creating powerful and secure AI Agents powered by Starknet.