AI Intervention Agent
An MCP server for real-time user intervention in AI-assisted development workflows.
When using AI CLIs/IDEs, agents can drift from your intent. This project gives you a simple way to intervene at key moments, review context in a Web UI, and send your latest instructions via interactive_feedback so the agent can continue on track.
Works with Cursor, VS Code, Claude Code, Augment, Windsurf, Trae, and more.
Quick start
- Install:
pip install ai-intervention-agent
# or
uv add ai-intervention-agent
- Configure your AI tool to launch the MCP server via
uvx:
{
"mcpServers": {
"ai-intervention-agent": {
"command": "uvx",
"args": ["ai-intervention-agent"],
"timeout": 600,
"autoApprove": ["interactive_feedback"]
}
}
}
[!NOTE] >
interactive_feedbackis a long-running tool. Some clients have a hard request timeout, so the Web UI provides a countdown + auto re-submit option to keep sessions alive.
- Only ask me through the MCP `ai-intervention-agent` tool; do not ask directly in chat or ask for end-of-task confirmation in chat.
- If a tool call fails, keep asking again through `ai-intervention-agent` instead of making assumptions, until the tool call succeeds.
ai-intervention-agent usage details:
- If requirements are unclear, use `ai-intervention-agent` to ask for clarification with predefined options.
- If there are multiple approaches, use `ai-intervention-agent` to ask instead of deciding unilaterally.
- If a plan/strategy needs to change, use `ai-intervention-agent` to ask instead of deciding unilaterally.
- Before finishing a request, always ask for feedback via `ai-intervention-agent`.
- Do not end the conversation/request unless the user explicitly allows it via `ai-intervention-agent`.
Screenshots
Key features
- Real-time intervention: the agent pauses and waits for your input via
interactive_feedback - Web UI: Markdown, code highlighting, and math rendering
- Multi-task: tab switching with independent countdown timers
- Auto re-submit: keep sessions alive by auto-submitting at timeout
- Notifications: web / sound / system / Bark
- SSH-friendly: great with port forwarding
VS Code extension (optional)
| Item | Value |
|---|---|
| Purpose | Embed the interaction panel into VS Code’s sidebar to avoid switching to a browser. |
| Install (Open VSX) | Open VSX |
| Download VSIX (GitHub Release) | GitHub Releases |
| Setting | ai-intervention-agent.serverUrl (should match your Web UI URL, e.g. http://localhost:8080; you can change web_ui.port in config.jsonc.default) |
Configuration
| Item | Value |
|---|---|
| Docs (English) | docs/configuration.md |
| Docs (简体中文) | docs/configuration.zh-CN.md |
| Default template | config.jsonc.default (on first run it will be copied to config.jsonc) |
| OS | User config directory |
|---|---|
| Linux | ~/.config/ai-intervention-agent/ |
| macOS | ~/Library/Application Support/ai-intervention-agent/ |
| Windows | %APPDATA%/ai-intervention-agent/ |
Architecture
flowchart TD
subgraph CLIENTS["AI clients"]
AI_CLIENT["AI CLI / IDE<br/>(Cursor, VS Code, Claude Code, ...)"]
end
subgraph MCP_PROC["MCP server process"]
MCP_SRV["ai-intervention-agent<br/>(server.py)"]
MCP_TOOL["MCP tool<br/>interactive_feedback"]
CFG_MGR["Config manager<br/>(config_manager.py)"]
NOTIF_MGR["Notification manager<br/>(notification_manager.py)"]
end
subgraph WEB_PROC["Web UI process"]
WEB_SRV["Web UI service<br/>(web_ui.py / Flask)"]
HTTP_API["HTTP API<br/>(/api/*)"]
TASK_Q["Task queue<br/>(task_queue.py)"]
WEB_SRV --> HTTP_API
WEB_SRV --> TASK_Q
end
subgraph USER_UI["User interfaces"]
BROWSER["Browser"]
VSCODE["VS Code extension<br/>(Webview)"]
end
CFG_FILE["config.jsonc<br/>(user config directory)"]
AI_CLIENT -->|MCP call| MCP_TOOL
MCP_SRV -->|exposes| MCP_TOOL
MCP_TOOL -->|ensure Web UI running| WEB_SRV
MCP_TOOL <-->|create task / poll result| HTTP_API
BROWSER <-->|HTTP| HTTP_API
VSCODE <-->|HTTP| HTTP_API
CFG_MGR <-->|read/write| CFG_FILE
WEB_SRV <-->|read| CFG_FILE
MCP_SRV --> NOTIF_MGR
NOTIF_MGR -->|web / sound / system / Bark| USER["User"]
Documentation
- API docs index:
docs/api/index.md - API docs (简体中文):
docs/api.zh-CN/index.md - DeepWiki: deepwiki.com/xiadengma/ai-intervention-agent
Related projects
License
MIT License
Related Servers
Scout Monitoring MCP
sponsorPut performance and error data directly in the hands of your AI assistant.
Alpha Vantage MCP Server
sponsorAccess financial market data: realtime & historical stock, ETF, options, forex, crypto, commodities, fundamentals, technical indicators, & more
Databutton
An MCP server for initial app planning and creating a good starting point for an app.
Sailor
Generate and render Mermaid diagrams as images using LLMs.
FAL Imagen 4
Generate high-quality images using Google's Imagen 4 Ultra model via the FAL AI platform.
Package README MCP Servers
A collection of MCP servers for fetching READMEs from various package managers.
SonarQube MCP Server
Integrates with SonarQube to provide AI assistants with access to code quality metrics, issues, and analysis results.
Kinsta MCP
Model Context Protocol (MCP) server for Kinsta WordPress hosting
pip Package README MCP Server
Fetch READMEs, metadata, and search for Python packages on PyPI.
Terminal MCP Server
Execute commands on local or remote hosts via SSH. Supports session persistence and environment variables.
MCP Framework
A TypeScript framework for building Model Context Protocol (MCP) servers.
Auto API - YApi
A tool to retrieve API interface information from YApi, with authentication configurable via environment variables.