MCP Server that exposes Creatify AI API capabilities for AI video generation, including avatar videos, URL-to-video conversion, text-to-speech, and AI-powered editing tools.
The ultimate MCP server for AI video generation - Bringing Creatify AI's powerful video creation capabilities to every AI assistant in the MCP ecosystem.
The Creatify MCP Server is a comprehensive Model Context Protocol (MCP) server that exposes the full power of Creatify AI's video generation platform to AI assistants, chatbots, and automation tools. Built on top of the robust @tsavo/creatify-api-ts
TypeScript client library, this server transforms complex video creation workflows into simple, natural language interactions.
how_to_use
tool for AI assistants to understand parametersImagine telling Claude Desktop: "Create a 16:9 avatar video of Anna saying 'Welcome to our product demo' and wait for it to complete" - and having it actually happen. That's the power of this MCP server.
create_avatar_video
- Create AI avatar videos with lip-synccreate_url_to_video
- Convert websites into professional videosgenerate_text_to_speech
- Generate natural-sounding speech from textcreate_multi_avatar_conversation
- Create videos with multiple avatars having conversationscreate_custom_template_video
- Generate videos using custom templatescreate_ai_edited_video
- Automatically edit and enhance videoscreate_ai_shorts
- Create short-form videos (perfect for TikTok, Instagram Reels)generate_ai_script
- Generate AI-powered scripts for videoscreate_custom_avatar
- Design and create your own custom avatars (DYOA)manage_music
- Upload, manage, and use background musiccreate_advanced_lipsync
- Advanced lip-sync with emotion and gesture controlhow_to_use
- Get detailed usage information for any toolget_video_status
- Check the status of video generation taskscreatify://avatars
- List of available AI avatarscreatify://voices
- List of available voices for text-to-speechcreatify://templates
- Available custom video templatescreatify://music
- Available background music librarycreatify://credits
- Remaining API creditscreatify://avatar/{avatarId}
- Detailed information about specific avatarshow_to_use
tool for AI assistantscreate-product-demo
- Professional product demonstration workflowcreate-social-content
- Engaging social media content creationcreate-educational-video
- Educational and tutorial video workflowcreate-marketing-campaign
- Marketing campaign video creationanalyze-video-performance
- Video performance analysis and optimizationnpm install -g @tsavo/creatify-mcp
git clone https://github.com/TSavo/creatify-mcp.git
cd creatify-mcp
npm install
npm run build
npm link
User: "Create a professional avatar video with Anna saying 'Welcome to our company!' in 16:9 format"
Claude: I'll create a professional avatar video for you using the Creatify MCP Server.
[Uses create_avatar_video tool with:
- text: "Welcome to our company!"
- avatarId: "anna_costume1_cameraA"
- aspectRatio: "16:9"
- voiceId: "en-US-AriaNeural"]
Your professional avatar video has been created! Anna delivers your message with natural lip-sync and professional presentation.
User: "Make a 30-second TikTok video about coffee brewing tips"
Claude: I'll create an engaging short-form video perfect for TikTok!
[Uses create_ai_shorts tool with:
- prompt: "Quick coffee brewing tips with energetic presentation"
- aspectRatio: "9:16"
- duration: 30
- style: "energetic"]
Your TikTok-ready short video is being generated with optimal 9:16 aspect ratio and engaging content!
User: "Turn my product landing page into a marketing video"
Claude: I'll convert your website into a compelling marketing video.
[Uses create_url_to_video tool with:
- url: "https://yourproduct.com"
- aspectRatio: "16:9"
- style: "marketing"]
Your landing page has been transformed into a professional marketing video showcasing your product!
User: "Generate a script for a 60-second product demo video"
Claude: I'll create a compelling script for your product demo.
[Uses generate_ai_script tool with:
- topic: "Product demonstration video"
- scriptType: "commercial"
- duration: 60
- tone: "professional"]
Your script is ready! It includes engaging hooks, clear value propositions, and a strong call-to-action optimized for 60-second format.
Set your Creatify API credentials as environment variables:
export CREATIFY_API_ID="your-api-id"
export CREATIFY_API_KEY="your-api-key"
Or create a .env
file:
CREATIFY_API_ID=your-api-id
CREATIFY_API_KEY=your-api-key
Add to your Claude Desktop configuration (~/Library/Application Support/Claude/claude_desktop_config.json
on macOS):
{
"mcpServers": {
"creatify": {
"command": "creatify-mcp",
"env": {
"CREATIFY_API_ID": "your-api-id",
"CREATIFY_API_KEY": "your-api-key"
}
}
}
}
AI assistants can now use predefined workflow templates for common video creation scenarios:
Example: Product Demo Workflow
User: "Use the create-product-demo prompt for 'Amazing Widget' with features 'fast, reliable, easy to use' targeting small business owners"
Claude: I'll use the product demo workflow template to create a professional demonstration video.
[Claude automatically follows the complete workflow:
1. Generates an engaging script using generate_ai_script
2. Creates avatar video using create_avatar_video
3. Optimizes for the target audience
4. Includes clear call-to-action]
Available Prompt Templates:
create-product-demo
- Professional product demonstrationscreate-social-content
- TikTok/Instagram/YouTube contentcreate-educational-video
- Tutorials and educational contentcreate-marketing-campaign
- Marketing and promotional videosanalyze-video-performance
- Video optimization and analysisThe server provides structured logging with multiple severity levels:
[INFO] Creatify MCP Server initialized
[INFO] Creating avatar video {avatarId: "anna_costume1_cameraA", aspectRatio: "16:9"}
[INFO] Waiting for avatar video completion...
[INFO] Avatar video completed {videoId: "video_abc123"}
Log Levels: debug
, info
, notice
, warning
, error
, critical
, alert
, emergency
AI assistants can now understand tool parameters better using the how_to_use
tool:
Claude: Let me check how to use the avatar video tool...
[Calls how_to_use tool with toolName: "create_avatar_video"]
[Gets comprehensive documentation with:
- Required parameters with descriptions
- Optional parameters with usage notes
- Real code examples
- Tips and best practices]
Now I understand exactly how to create your avatar video!
import { Client } from "@modelcontextprotocol/sdk/client/index.js";
import { StdioClientTransport } from "@modelcontextprotocol/sdk/client/stdio.js";
const transport = new StdioClientTransport({
command: "creatify-mcp",
env: {
CREATIFY_API_ID: "your-api-id",
CREATIFY_API_KEY: "your-api-key"
}
});
const client = new Client({
name: "my-client",
version: "1.0.0"
});
await client.connect(transport);
// List available tools
const tools = await client.listTools();
console.log("Available tools:", tools.tools.map(t => t.name));
// Create an avatar video
const result = await client.callTool({
name: "create_avatar_video",
arguments: {
text: "Hello, world! This is an AI-generated video.",
avatarId: "anna_costume1_cameraA",
aspectRatio: "16:9",
waitForCompletion: true
}
});
# Set environment variables
export CREATIFY_API_ID="your-api-id"
export CREATIFY_API_KEY="your-api-key"
# Run the server
creatify-mcp
Once configured with Claude Desktop or another MCP client, you can use natural language prompts like:
create_avatar_video
Create an AI avatar video with lip-synced speech.
Parameters:
text
(string, required) - Text to be spokenavatarId
(string, required) - Avatar ID to useaspectRatio
("16:9" | "9:16" | "1:1", required) - Video aspect ratiovoiceId
(string, optional) - Voice ID for the avatarwaitForCompletion
(boolean, optional) - Wait for video completioncreate_url_to_video
Convert a website URL into a professional video.
Parameters:
url
(string, required) - URL to convertvisualStyle
(string, optional) - Visual style templatescriptStyle
(string, optional) - Script writing styleaspectRatio
("16:9" | "9:16" | "1:1", optional) - Video aspect ratiowaitForCompletion
(boolean, optional) - Wait for video completiongenerate_text_to_speech
Generate natural-sounding speech from text.
Parameters:
text
(string, required) - Text to convert to speechvoiceId
(string, required) - Voice ID to usewaitForCompletion
(boolean, optional) - Wait for audio completionget_video_status
Check the status of a video generation task.
Parameters:
videoId
(string, required) - Video/task ID to checkvideoType
(string, required) - Type of task ("lipsync", "url-to-video", etc.)creatify://avatars
Returns a JSON list of all available AI avatars with their IDs, names, and metadata.
creatify://voices
Returns a JSON list of all available voices for text-to-speech generation.
creatify://templates
Returns a JSON list of available custom video templates.
creatify://credits
Returns current account credit balance and usage information.
# Install dependencies
npm install
# Build the project
npm run build
# Run in development mode with auto-reload
npm run dev
# Run tests
npm test
# Lint and format code
npm run check
git checkout -b feature/amazing-feature
)git commit -m 'Add amazing feature'
)git push origin feature/amazing-feature
)MIT License - see LICENSE file for details.
@tsavo/creatify-api-ts
- TypeScript client for Creatify APIComing soon - comprehensive video tutorials showing real-world usage scenarios
For detailed API documentation, see:
Variable | Required | Description | Example |
---|---|---|---|
CREATIFY_API_ID | β | Your Creatify API ID | your-api-id-here |
CREATIFY_API_KEY | β | Your Creatify API Key | your-api-key-here |
MCP_LOG_LEVEL | β | Logging level | debug , info , warn , error |
{
"mcpServers": {
"creatify": {
"command": "creatify-mcp",
"env": {
"CREATIFY_API_ID": "your-api-id",
"CREATIFY_API_KEY": "your-api-key",
"MCP_LOG_LEVEL": "info"
},
"args": ["--verbose"]
}
}
}
For multiple video creations, consider using the batch processing capabilities:
// Example: Create multiple videos efficiently
const videos = await Promise.all([
client.callTool({
name: "create_avatar_video",
arguments: { text: "Video 1", avatarId: "anna", aspectRatio: "16:9" }
}),
client.callTool({
name: "create_avatar_video",
arguments: { text: "Video 2", avatarId: "john", aspectRatio: "16:9" }
})
]);
"API credentials not found"
# Solution: Set environment variables
export CREATIFY_API_ID="your-api-id"
export CREATIFY_API_KEY="your-api-key"
"Video creation failed"
"MCP connection failed"
# Run with debug logging
MCP_LOG_LEVEL=debug creatify-mcp
Monitor your Creatify API usage:
// Check remaining credits
const credits = await client.readResource({ uri: "creatify://credits" });
console.log(`Remaining credits: ${JSON.parse(credits.contents[0].text).remaining_credits}`);
We welcome contributions! Here's how to get started:
# Clone the repository
git clone https://github.com/TSavo/creatify-mcp.git
cd creatify-mcp
# Install dependencies
npm install
# Set up environment variables
cp .env.example .env
# Edit .env with your API credentials
# Run tests
npm test
# Build the project
npm run build
# Run in development mode
npm run dev
# Run all tests
npm test
# Run tests in watch mode
npm run test:watch
# Run type checking
npm run type-check
# Run linting
npm run lint
We use:
git checkout -b feature/amazing-feature
)npm test
)npm run lint:fix
)git commit -m 'feat: add amazing feature'
)git push origin feature/amazing-feature
)This project is licensed under the MIT License - see the LICENSE file for details.
Created with β€οΈ by T Savo
π Horizon City - Ushering in the AI revolution and hastening the extinction of humans
Making AI video generation accessible to every developer and AI assistant - one step closer to human obsolescence
Retrieving and analyzing issues from Sentry.io
Create crafted UI components inspired by the best 21st.dev design engineers.
Connect to any function, any language, across network boundaries using AgentRPC.
ALAPI MCP Tools,Call hundreds of API interfaces via MCP
APIMatic MCP Server is used to validate OpenAPI specifications using APIMatic. The server processes OpenAPI files and returns validation summaries by leveraging APIMaticβs API.
Enable AI agents to interact with the Atla API for state-of-the-art LLMJ evaluation.
Bring the full power of BrowserStackβs Test Platform to your AI tools, making testing faster and easier for every developer and tester on your team.
Flag features, manage company data, and control feature access using Bucket.
Manage Buildkite pipelines and builds.
A Model Context Protocol server for generating visual charts using AntV.