DocuMind MCP Server
An MCP server for analyzing documentation quality using advanced neural processing.
🌐 DocuMind MCP Server
"Where Documentation Meets Digital Intelligence"
A next-generation Model Context Protocol (MCP) server that revolutionizes documentation quality analysis through advanced neural processing.
⚡ Core Systems
- 🧠 Neural Documentation Analysis: Advanced algorithms for comprehensive README evaluation
- 🔮 Holographic Header Scanning: Cutting-edge SVG analysis for visual elements
- 🌍 Multi-dimensional Language Support: Cross-linguistic documentation verification
- 💫 Quantum Suggestion Engine: AI-powered improvement recommendations
🚀 System Boot Sequence
System Requirements
- Node.js 18+
- npm || yarn
Initialize Core
npm install
Compile Matrix
npm run build
Neural Development Link
Establish real-time neural connection:
npm run watch
🛸 Operation Protocol
System Configuration
Integrate with Claude Desktop mainframe:
Windows Terminal:
// %APPDATA%/Claude/claude_desktop_config.json
{
"mcpServers": {
"documind-mcp-server": {
"command": "/path/to/documind-mcp-server/build/index.js"
}
}
}
Neural Interface Commands
evaluate_readme
Initiates quantum analysis of documentation structure.
Parameters:
projectPath
: Neural pathway to target directory
Example Request:
{
name: "evaluate_readme",
arguments: {
projectPath: "/path/to/project"
}
}
Example Response:
{
content: [
{
type: "text",
text: JSON.stringify({
filePath: "/path/to/project/README.md",
hasHeaderImage: true,
headerImageQuality: {
hasGradient: true,
hasAnimation: true,
// ... other quality metrics
},
score: 95,
suggestions: [
"Consider adding language badges",
// ... other suggestions
]
})
}
]
}
🔮 Development Matrix
Debug Protocol
Access the neural network through MCP Inspector:
npm run inspector
Troubleshooting Guide
Common Issues and Solutions
-
Header Image Not Detected
- Ensure SVG file is placed in the
assets/
directory - Validate SVG file contains proper XML structure
- Check file permissions
- Ensure SVG file is placed in the
-
Language Badges Not Recognized
- Verify badges use shields.io format
- Check HTML structure follows recommended pattern
- Ensure proper center alignment
-
Build Errors
- Clear
node_modules
and reinstall dependencies - Ensure TypeScript version matches project requirements
- Check for syntax errors in modified files
- Clear
-
MCP Connection Issues
- Verify stdio transport configuration
- Check Claude Desktop configuration
- Ensure proper file paths in config
Performance Optimization
-
SVG Analysis
- Minimize SVG complexity for faster parsing
- Use efficient gradients and animations
- Optimize file size while maintaining quality
-
README Scanning
- Structure content for optimal parsing
- Use recommended markdown patterns
- Follow badge placement guidelines
🔬 API Documentation
Core Classes
ReadmeService
Primary service for README analysis and evaluation.
class ReadmeService {
// Analyzes all README files in a project
async evaluateAllReadmes(projectPath: string): Promise<ReadmeEvaluation[]>
// Evaluates a single README file
private async evaluateReadme(dirPath: string, readmePath: string): Promise<ReadmeEvaluation>
// Evaluates language badge configuration
private evaluateLanguageBadges(content: string): BadgeEvaluation
}
SVGService
Specialized service for SVG header image analysis.
class SVGService {
// Evaluates SVG header image quality
public evaluateHeaderImageQuality(imgSrc: string, content: string): HeaderImageQuality
// Checks for project-specific elements in SVG
private checkProjectSpecificImage(svgContent: string, readmeContent: string): boolean
}
Core Interfaces
interface ReadmeEvaluation {
filePath: string;
hasHeaderImage: boolean;
headerImageQuality: HeaderImageQuality;
isCentered: {
headerImage: boolean;
title: boolean;
badges: boolean;
};
hasBadges: {
english: boolean;
japanese: boolean;
isCentered: boolean;
hasCorrectFormat: boolean;
};
score: number;
suggestions: string[];
}
interface HeaderImageQuality {
hasGradient: boolean;
hasAnimation: boolean;
hasRoundedCorners: boolean;
hasEnglishText: boolean;
isProjectSpecific: boolean;
}
Error Handling
The server implements comprehensive error handling:
try {
const evaluations = await readmeService.evaluateAllReadmes(projectPath);
// Process results
} catch (error) {
const errorMessage = error instanceof Error ? error.message : String(error);
return {
content: [{
type: 'text',
text: `Evaluation error: ${errorMessage}`
}],
isError: true
};
}
⚡ License
Operating under MIT Protocol.
Related Servers
Authless Remote MCP Server
An authentication-free, remote MCP server designed for deployment on Cloudflare Workers.
Pica MCP Server
An MCP server for Pica that enables seamless interaction with various third-party services through a standardized interface.
VeyraX
Single tool to control all 100+ API integrations, and UI components
Gentoro
Gentoro generates MCP Servers based on OpenAPI specifications.
Azure DevOps
Integrate with Azure DevOps services to manage work items, repositories, and pipelines.
BloodHound-MCP
integration that connects BloodHound with AI through MCP, allowing security professionals to analyze Active Directory attack paths using natural language queries instead of Cypher.
Monad MCP Server
Interact with the Monad testnet, query blockchain data, and engage with the CoinflipGame smart contract.
OpenZeppelin MCP
Access secure, standards-compliant smart contract templates from OpenZeppelin, including ERC20, ERC721, and ERC1155.
TestRail
Interact with TestRail's core entities such as test cases, runs, and results using a standardized protocol.
AI Image Generation
Generate images using the Together AI API. Supports custom aspect ratios, save paths, and batch generation.