Rubber Duck MCP
A tool that applies rubber duck debugging techniques to AI development environments.
Rubber Duck MCP
Description
Rubber Duck MCP is a Model Context Protocol (MCP) tool that brings the power of rubber duck debugging to your AI development environment. Rubber duck debugging is a proven technique in software engineering, where articulating a problem in natural language—often to an inanimate object like a rubber duck—can illuminate solutions and clarify thought processes. This method, first popularized in The Pragmatic Programmer (Hunt & Thomas, 1999), is widely recognized for its effectiveness in:
- Revealing hidden assumptions and logical errors
- Encouraging step-by-step reasoning
- Facilitating deeper understanding through explanation
- Reducing cognitive load by externalizing thought
"In describing what the code is supposed to do and observing what it actually does, any incongruity between these two becomes apparent." — Wikipedia: Rubber Duck Debugging
By integrating this method into an LLM-powered IDE, Rubber Duck MCP enables developers and AI agents to:
- Debug more effectively by explaining problems to a non-judgmental, always-available listener
- Enhance LLM reasoning by prompting the model to articulate and reflect on its own logic
- Accelerate problem-solving by surfacing solutions through structured self-explanation
For further reading:
- Rubber Duck Debugging (rubberduckdebugging.com)
- The Psychology Underlying the Power of Rubber Duck Debugging
Installation
Prerequisites
- Python 3.8+
- fastmcp (install via pip)
Steps
- Clone the repository:
git clone https://github.com/Omer-Sadeh/RubberDuckMCP.git cd RubberDuckMCP - Create and activate a virtual environment (recommended):
python3 -m venv .venv source .venv/bin/activate - Install dependencies:
pip install -r requirements.txt - Add Rubber Duck MCP to Cursor (or another AI IDE supporting MCP):
- Open your
.cursor/mcp.jsonfile (or the equivalent configuration for your IDE). - Add an entry for Rubber Duck MCP, specifying the venv's Python executable and the path to
RubberMCP.py. For example:{ "mcpServers": { "rubber-duck": { "command": "/absolute/path/to/RubberDuckMCP/.venv/bin/python", "args": [ "/absolute/path/to/RubberDuckMCP/RubberMCP.py" ] } } } - Adjust the
commandandargsfields to match your virtual environment's Python executable and the path toRubberMCP.pyon your system. - Save the file and restart Cursor (or your IDE) to load the new MCP server.
- Open your
Usage
Once configured, use the explain_to_duck tool to articulate your problem or code issue. The Rubber Duck MCP will listen and respond, helping you clarify your thinking and uncover solutions.
License
This project is licensed under the MIT License. Everyone is welcome to contribute, fork, and copy this repository. Collaboration and open-source contributions are highly encouraged!
Related Servers
QA Sphere
Integration with QA Sphere test management system, enabling LLMs to discover, summarize, and interact with test cases directly from AI-powered IDEs
LaTeX PDF MCP Server
Converts LaTeX source code into professionally formatted PDF documents.
Enkrypt AI
Integrate red-teaming, prompt auditing, and AI safety analysis into any MCP-compatible client.
Next.js DevTools MCP
next-devtools-mcp is a MCP server that provides Next.js development tools and utilities for AI coding assistants like Claude and Cursor.
Cargo MCP
Interact with Rust projects using Cargo commands like build, test, and run.
Remote MCP Server (Authless)
An example of a remote MCP server deployable on Cloudflare Workers, without authentication.
MAVAE - IMAGE TOOLBOX
A creative toolkit for AI agents to generate, edit, and manage images, models, and collections using the MAVAE API.
Authless Remote MCP Server
An authentication-free, remote MCP server designed for deployment on Cloudflare Workers.
Web3 Assistant MCP
A secure, multi-chain toolkit for interacting with blockchain smart contracts.
Hostname MCP Server
A lightweight server for hostname detection and system context.