Umami MCP Server
Integrate Umami Analytics with any MCP client like Claude Desktop, VS Code, and more.
Umami MCP Server
Connect your Umami Analytics to any MCP client - Claude Desktop, VS Code, Cursor, Windsurf, Zed, and more.
Prompts
Analytics & Traffic
- "Give me a comprehensive analytics report for my website over the last 30 days"
- "Which pages are getting the most traffic this month? Show me the top 10"
- "Analyze my website's traffic patterns - when do I get the most visitors?"
User Insights
- "Where are my visitors coming from? Break it down by country and city"
- "What devices and browsers are my users using?"
- "Show me the user journey - what pages do visitors typically view in sequence?"
Real-time Monitoring
- "How many people are on my website right now? What pages are they viewing?"
- "Is my website experiencing any issues? Check if traffic has dropped significantly"
Content & Campaign Analysis
- "Which blog posts should I update? Show me articles with declining traffic"
- "How did my recent email campaign perform? Track visitors from the campaign UTM"
- "Compare traffic from different social media platforms"
Quick Start
Option 1: Download Binary
Get the latest release for your platform from Releases
Option 2: Docker
docker run -i --rm \
-e UMAMI_URL="https://your-instance.com" \
-e UMAMI_USERNAME="username" \
-e UMAMI_PASSWORD="password" \
ghcr.io/macawls/umami-mcp-server
Option 3: Go Install
go install github.com/Macawls/umami-mcp-server@latest
# Or specific version
go install github.com/Macawls/umami-mcp-server@v1.0.3
Installs to ~/go/bin/umami-mcp-server (or $GOPATH/bin)
Configure Your MCP Client
Claude Desktop
Add to your Claude Desktop config:
Windows: %APPDATA%\Claude\claude_desktop_config.json
macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
Linux: ~/.config/Claude/claude_desktop_config.json
{
"mcpServers": {
"umami": {
"command": "~/go/bin/umami-mcp-server",
"env": {
"UMAMI_URL": "https://your-umami-instance.com",
"UMAMI_USERNAME": "your-username",
"UMAMI_PASSWORD": "your-password"
}
}
}
}
{
"mcpServers": {
"umami": {
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"-e",
"UMAMI_URL",
"-e",
"UMAMI_USERNAME",
"-e",
"UMAMI_PASSWORD",
"ghcr.io/macawls/umami-mcp-server"
],
"env": {
"UMAMI_URL": "https://your-umami-instance.com",
"UMAMI_USERNAME": "your-username",
"UMAMI_PASSWORD": "your-password"
}
}
}
}
{
"mcpServers": {
"umami": {
"command": "~/go/bin/umami-mcp-server",
"env": {
"UMAMI_URL": "${input:umami_url}",
"UMAMI_USERNAME": "${input:umami_username}",
"UMAMI_PASSWORD": "${input:umami_password}"
}
}
},
"inputs": [
{
"type": "promptString",
"id": "umami_url",
"description": "Umami instance URL"
},
{
"type": "promptString",
"id": "umami_username",
"description": "Umami username"
},
{
"type": "promptString",
"id": "umami_password",
"description": "Umami password",
"password": true
}
]
}
Restart Claude Desktop to load the server.
VS Code (GitHub Copilot)
Enable agent mode and add MCP servers to access Umami from Copilot.
For workspace: Create .vscode/mcp.json
{
"servers": {
"umami": {
"command": "~/go/bin/umami-mcp-server",
"env": {
"UMAMI_URL": "https://your-umami-instance.com",
"UMAMI_USERNAME": "your-username",
"UMAMI_PASSWORD": "your-password"
}
}
}
}
{
"inputs": [
{
"type": "promptString",
"id": "umami_url",
"description": "Umami instance URL"
},
{
"type": "promptString",
"id": "umami_username",
"description": "Umami username"
},
{
"type": "promptString",
"id": "umami_password",
"description": "Umami password",
"password": true
}
],
"servers": {
"umami": {
"command": "~/go/bin/umami-mcp-server",
"env": {
"UMAMI_URL": "${input:umami_url}",
"UMAMI_USERNAME": "${input:umami_username}",
"UMAMI_PASSWORD": "${input:umami_password}"
}
}
}
}
Access via: Chat view → Agent mode → Tools button
Other MCP Clients
Cursor: Ctrl/Cmd + Shift + P → "Cursor Settings" → MCP section
Windsurf: Settings → MCP Settings → Add MCP Server
Config location: %APPDATA%\windsurf\mcp_settings.json (Windows)
Zed: Settings → assistant.mcp_servers
Cline: VS Code Settings → Extensions → Cline → MCP Servers
All use similar JSON format as above. Docker and secure prompts work the same way.
Available Tools
- get_websites - List all your websites
- get_stats - Get visitor statistics
- get_pageviews - View page traffic over time
- get_metrics - See browsers, countries, devices, and more
- get_active - Current active visitors
Alternative Configuration
Instead of environment variables, create a config.yaml file next to the binary:
umami_url: https://your-umami-instance.com
username: your-username
password: your-password
Environment variables take priority over the config file.
Build from Source
git clone https://github.com/Macawls/umami-mcp-server.git
cd umami-mcp-server
go build -o umami-mcp
Troubleshooting
Binary won't run
- macOS: Run
xattr -c umami-mcp-serverto remove quarantine - Linux: Run
chmod +x umami-mcp-serverto make executable
Connection errors
- Verify your Umami instance is accessible
- Check your credentials are correct
Tools not showing up
- Check your MCP client logs for errors
- Verify the binary path is absolute
- Try running the binary directly to check for errors
License
MIT
Related Servers
laundry-timer-mcp
A laundry planning assistant that uses preferences and real-time weather forecasts.
Procesio MCP Server
Interact with the Procesio automation platform API.
Goatcounter
Interact with the Goatcounter web analytics API.
Shortcut
Interact with the Shortcut project management tool, formerly known as Clubhouse.
Adfin
The only platform you need to get paid - all payments in one place, invoicing and accounting reconciliations with Adfin.
Browser Use
A simple, self-contained notes system with resources, tools, and prompts.
ClickUp
Interact with ClickUp's task management API to manage projects and tasks through natural language.
MCBU Campus Assistant
A chatbot for Manisa Celal Bayar University student affairs, featuring a web scraper, student database, and API integration tools for automation.
Jira
Interact with Jira to manage issues, projects, and workflows using the Jira Cloud Platform REST API.
HiveFlow
Connect AI assistants directly to the HiveFlow automation platform.