MinIO
MCP server and client for MinIO object storage, configured via environment variables.
MinIO Model-Context Protocol (MCP)
This project implements a Model-Context Protocol (MCP) server and client for MinIO object storage. It provides a standardized way to interact with MinIO.
Features
Server
Resources
Exposes MinIO data through Resources. The server can access and provide:
- Text files (automatically detected based on file extension)
- Binary files (handled as application/octet-stream)
- Bucket contents (up to 1000 objects per bucket)
Tools
-
ListBuckets
- Returns a list of all buckets owned by the authenticated sender of the request
- Optional parameters:
start_after(pagination),max_buckets(limit results)
-
ListObjects
- Returns some or all (up to 1,000) of the objects in a bucket with each request
- Required parameter:
bucket_name - Optional parameters:
prefix(filter by prefix),max_keys(limit results)
-
GetObject
- Retrieves an object from MinIO
- Required parameters:
bucket_name,object_name
-
PutObject
- Uploads a file to MinIO bucket using fput method
- Required parameters:
bucket_name,object_name,file_path
Client
The project includes multiple client implementations:
- Basic Client - Simple client for direct interaction with the MinIO MCP server
- Anthropic Client - Integration with Anthropic's Claude models for AI-powered interactions with MinIO
Installation
- Clone the repository:
git clone https://github.com/yourusername/minio-mcp.git
cd minio-mcp
- Install dependencies using pip:
pip install -r requirements.txt
Or using uv:
uv pip install -r requirements.txt
Environment Configuration
Create a .env file in the root directory with the following configuration:
# MinIO Configuration
MINIO_ENDPOINT=play.min.io
MINIO_ACCESS_KEY=your_access_key
MINIO_SECRET_KEY=your_secret_key
MINIO_SECURE=true
MINIO_MAX_BUCKETS=5
# Server Configuration
SERVER_HOST=0.0.0.0
SERVER_PORT=8000
# For Anthropic Client (if using)
ANTHROPIC_API_KEY=your_anthropic_api_key
Usage
Running the Server
The server can be run directly:
python src/minio_mcp_server/server.py
Using the Basic Client
from src.client import main
import asyncio
asyncio.run(main())
Using the Anthropic Client
- Configure the servers in
src/client/servers_config.json:
{
"mcpServers": {
"minio_service": {
"command": "python",
"args": ["path/to/minio_mcp_server/server.py"]
}
}
}
- Run the client:
python src/client/mcp_anthropic_client.py
-
Interact with the assistant:
- The assistant will automatically detect available tools
- You can ask questions about your MinIO data
- The assistant will use the appropriate tools to retrieve information
-
Exit the session:
- Type
quitorexitto end the session
- Type
Integration with Claude Desktop
You can integrate this MCP server with Claude Desktop:
Configuration
On MacOS: ~/Library/Application\ Support/Claude/claude_desktop_config.json
On Windows: %APPDATA%/Claude/claude_desktop_config.json
{
"mcpServers": {
"minio-mcp": {
"command": "python",
"args": [
"path/to/minio-mcp/src/minio_mcp_server/server.py"
]
}
}
}
Development
Project Structure
minio-mcp/
├── src/
│ ├── client/ # Client implementations
│ │ ├── mcp_anthropic_client.py # Anthropic integration
│ │ └── servers_config.json # Server configuration
│ ├── minio_mcp_server/ # MCP server implementation
│ │ ├── resources/ # Resource implementations
│ │ │ └── minio_resource.py # MinIO resource
│ │ └── server.py # Main server implementation
│ ├── __init__.py
│ └── client.py # Basic client implementation
├── LICENSE
├── pyproject.toml
├── README.md
└── requirements.txt
Running Tests
pytest
Code Formatting
black src/
isort src/
flake8 src/
Debugging
Since MCP servers run over stdio, debugging can be challenging. For the best debugging experience, we recommend using the MCP Inspector:
npx @modelcontextprotocol/inspector python path/to/minio-mcp/src/minio_mcp_server/server.py
Upon launching, the Inspector will display a URL that you can access in your browser to begin debugging.
License
This project is licensed under the MIT License - see the LICENSE file for details.
Related Servers
Google Drive
Interact with Google Drive, Sheets, and Docs APIs.
WebDAV MCP Server
Perform CRUD operations on a WebDAV server with basic authentication.
MCP Google Drive Server
Connect your AI assistant to Google Drive for file management and access.
MCP Backup Server
A server for backing up and restoring data for AI agents and code editing tools.
Tencent Cloud COS MCP
Quickly integrate with Tencent Cloud Storage (COS) and Data Processing (CI) capabilities powered
Memory Bank MCP
An MCP server for remote memory bank management, enhanced with Supergateway for streamable-http transport. It supports multi-project management and requires persistent storage.
Dropbox by CData
A read-only MCP server by CData that allows LLMs to query live Dropbox data. Requires the CData JDBC Driver for Dropbox.
Pinata
Interact with Public and Private IPFS through Pinata's API. Requires a Pinata account and API key.
Box
Interact with the Intelligent Content Management platform through Box AI.
AWS S3
Retrieve files like PDFs from an AWS S3 bucket. Requires AWS credentials for access.