VRChat MCP OSC
A bridge between AI assistants and VRChat using MCP and OSC, enabling AI-driven avatar control and interactions in virtual reality.
VRChat MCP OSC
VRChat MCP OSC provides a bridge between AI assistants and VRChat using the Model Context Protocol (MCP), enabling AI-driven avatar control and interactions in virtual reality environments.
Overview
By leveraging OSC (Open Sound Control) to communicate with VRChat, VRChat MCP OSC allows AI assistants such as Claude to:
- Control avatar parameters and expressions
- Send messages in VRChat
- Respond to various VR events
And more—all through the high-level API provided by the Model Context Protocol.
Key Features
- Avatar Control: Manipulate avatar parameters and expressions
- Movement Control: Direct avatar movement and orientation
- Communication: Send messages through VRChat's chatbox
- Menu Access: Toggle VRChat menu and interface elements
- Avatar Information: Query avatar properties and parameters
- Seamless VRChat Integration: Automatic detection of avatar configurations
System Requirements
- Node.js 18 or higher
- VRChat with OSC enabled
- Claude Desktop (with MCP support)
Using with Claude Desktop
Clone and npm link
git clone https://github.com/Krekun/vrchat-mcp-osc
cd vrchat-mcp-osc
npm link
Configure Claude Desktop
Configure Claude Desktop by editing the claude_desktop_config.json file:
{
"mcpServers": {
"vrchat-mcp-osc": {
"command": "npx",
"args": [
"vrchat-mcp-osc"
]
}
}
}
Command Line Options
The server supports various command-line arguments for customization:
# Claude Desktop configuration
{
"mcpServers": {
"vrchat-mcp-osc": {
"command": "npx",
"args": [
"vrchat-mcp-osc",
"--websocket-port", "8765",
"--websocket-host", "localhost",
"--osc-send-port", "9000",
"--osc-send-ip", "127.0.0.1",
"--osc-receive-port", "9001",
"--osc-receive-ip", "127.0.0.1",
"--debug"
]
}
}
}
Available Options
| Option | Description | Default | Notes |
|---|---|---|---|
--websocket-port <port> | WebSocket port | 8765 | For WebSocket communication |
--websocket-host <host> | WebSocket host | localhost | For WebSocket communication |
--osc-send-port <port> | OSC send port | 9000 | Port for sending to VRChat |
--osc-send-ip <ip> | OSC send IP | 127.0.0.1 | Address for sending to VRChat |
--osc-receive-port <port> | OSC receive port | 9001 | Port for receiving from VRChat |
--osc-receive-ip <ip> | OSC receive IP | 127.0.0.1 | Address for receiving from VRChat |
--debug | Enable debug logging | false | Output detailed logs |
--no-relay | Disable relay server | false | When not using relay server |
Available MCP Tools
VRChat MCP OSC exposes the following MCP tools to AI assistants:
| Tool Name | Description |
|---|---|
get_avatar_name | Retrieves the current avatar's name |
get_avatar_parameters | Lists available avatar parameters |
set_avatar_parameter | Sets a specific avatar parameter |
set_emote_parameter | Triggers avatar emotes |
move_avatar | Moves the avatar in a specific direction |
look_direction | Controls avatar's view direction |
jump | Makes the avatar jump |
menu | Toggles the VRChat menu |
voice | Toggles voice features |
send_message | Sends a message to the VRChat chatbox |
Troubleshooting
Common Issues
-
VRChat not responding to commands
- Ensure OSC is enabled in VRChat settings
- Check that the OSC ports match between VRChat and MCP configuration
- Restart VRChat and Claude Desktop
-
MCP server not starting
- Ensure Node.js 18+ is installed
- Check command line arguments for errors
- Try running with
--debugflag for more detailed logs - Use
npx vrchat-mcp-osc -- --debugif direct arguments don't work
-
NPX execution issues
- If arguments aren't being recognized, try using the double dash format:
npx vrchat-mcp-osc -- --debug - On Windows, try running in a command prompt with administrator privileges
- If you're having trouble with global installation, try the local npm link approach
- If arguments aren't being recognized, try using the double dash format:
Project Structure
vrchat-mcp-osc/
├── packages/
│ ├── mcp-server/ # MCP server implementation (main entry point)
│ ├── relay-server/ # WebSocket to OSC relay
│ ├── types/ # Shared TypeScript interfaces
│ └── utils/ # Common utilities
└── pnpm-workspace.yaml # Workspace configuration
Development
Build From Source
# Clone the repository
git clone https://github.com/Krekun/vrchat-mcp-osc
cd vrchat-mcp-osc
# Install dependencies
pnpm install
# Build all packages
pnpm -r build
# Development mode
pnpm -r dev
License
VRChat MCP OSC is dual-licensed as follows:
For Non-Commercial Use: You may use, modify, and redistribute the software under the terms of the MIT License. (See the MIT License file for details.)
For Commercial Use: Commercial use of this software requires a separate commercial license.
By using this software under the MIT License for non-commercial purposes, you agree to the terms of that license. Commercial users must obtain a commercial license as described above.
Acknowledgments
- VRChat team for the OSC integration
- Model Context Protocol for the standardized AI interface
- Anthropic for Claude's MCP implementation
Related Servers
Instagram DMs
Send Instagram DMs via your LLM
IMAP MCP
An IMAP Model Context Protocol (MCP) server to expose IMAP operations as tools for AI assistants.
Telegram
A server for interacting with Telegram via the MTProto API, requiring API credentials.
MCP Reddit Server
An MCP server for interacting with the Reddit API, enabling searches for posts, comments, and subreddits.
MCP WebSocket Server
A WebSocket server for handling mail operations.
Gmail MCP Server
An MCP server that enables AI models to interact directly with the Gmail API to manage emails.
Unichat
A unified interface for various chat AI models including OpenAI, MistralAI, Anthropic, and Google AI, requiring vendor API keys.
MCP Chat Desktop App
A cross-platform desktop app for interacting with various Large Language Models (LLMs) through the Model Context Protocol (MCP).
Speech MCP Server
A text-to-speech server using the Kokoro TTS model, configurable via environment variables.
Audio MCP Server
Provides audio input and output capabilities for AI assistants.