OpenAI Image Generation
Generate and edit images using OpenAI's DALL-E models via the official Python SDK.
OpenAI Image Generation MCP Server
This project implements an MCP (Model Context Protocol) server that provides tools for generating and editing images using OpenAI's gpt-image-1 model via the official Python SDK.
Features
This MCP server provides the following tools:
-
generate_image: Generates an image using OpenAI'sgpt-image-1model based on a text prompt and saves it.- Input Schema:
{ "type": "object", "properties": { "prompt": { "type": "string", "description": "The text description of the desired image(s)." }, "model": { "type": "string", "default": "gpt-image-1", "description": "The model to use (currently 'gpt-image-1')." }, "n": { "type": ["integer", "null"], "default": 1, "description": "The number of images to generate (Default: 1)." }, "size": { "type": ["string", "null"], "enum": ["1024x1024", "1536x1024", "1024x1536", "auto"], "default": "auto", "description": "Image dimensions ('1024x1024', '1536x1024', '1024x1536', 'auto'). Default: 'auto'." }, "quality": { "type": ["string", "null"], "enum": ["low", "medium", "high", "auto"], "default": "auto", "description": "Rendering quality ('low', 'medium', 'high', 'auto'). Default: 'auto'." }, "user": { "type": ["string", "null"], "default": null, "description": "An optional unique identifier representing your end-user." }, "save_filename": { "type": ["string", "null"], "default": null, "description": "Optional filename (without extension). If None, a default name based on the prompt and timestamp is used." } }, "required": ["prompt"] } - Output:
{"status": "success", "saved_path": "path/to/image.png"}or error dictionary.
- Input Schema:
-
edit_image: Edits an image or creates variations using OpenAI'sgpt-image-1model and saves it. Can use multiple input images as reference or perform inpainting with a mask.- Input Schema:
{ "type": "object", "properties": { "prompt": { "type": "string", "description": "The text description of the desired final image or edit." }, "image_paths": { "type": "array", "items": { "type": "string" }, "description": "A list of file paths to the input image(s). Must be PNG. < 25MB." }, "mask_path": { "type": ["string", "null"], "default": null, "description": "Optional file path to the mask image (PNG with alpha channel) for inpainting. Must be same size as input image(s). < 25MB." }, "model": { "type": "string", "default": "gpt-image-1", "description": "The model to use (currently 'gpt-image-1')." }, "n": { "type": ["integer", "null"], "default": 1, "description": "The number of images to generate (Default: 1)." }, "size": { "type": ["string", "null"], "enum": ["1024x1024", "1536x1024", "1024x1536", "auto"], "default": "auto", "description": "Image dimensions ('1024x1024', '1536x1024', '1024x1536', 'auto'). Default: 'auto'." }, "quality": { "type": ["string", "null"], "enum": ["low", "medium", "high", "auto"], "default": "auto", "description": "Rendering quality ('low', 'medium', 'high', 'auto'). Default: 'auto'." }, "user": { "type": ["string", "null"], "default": null, "description": "An optional unique identifier representing your end-user." }, "save_filename": { "type": ["string", "null"], "default": null, "description": "Optional filename (without extension). If None, a default name based on the prompt and timestamp is used." } }, "required": ["prompt", "image_paths"] } - Output:
{"status": "success", "saved_path": "path/to/image.png"}or error dictionary.
- Input Schema:
Prerequisites
- Python (3.8 or later recommended)
- pip (Python package installer)
- An OpenAI API Key (set directly in the script or via the
OPENAI_API_KEYenvironment variable - using environment variables is strongly recommended for security). - An MCP client environment (like the one used by Cline) capable of managing and launching MCP servers.
Installation
- Clone the repository:
git clone https://github.com/IncomeStreamSurfer/chatgpt-native-image-gen-mcp.git cd chatgpt-native-image-gen-mcp - Set up a virtual environment (Recommended):
python -m venv venv source venv/bin/activate # On Windows use `venv\Scripts\activate` - Install dependencies:
pip install -r requirements.txt - (Optional but Recommended) Set Environment Variable:
Set the
OPENAI_API_KEYenvironment variable with your OpenAI key instead of hardcoding it in the script. How you set this depends on your operating system.
Configuration (for Cline MCP Client)
To make this server available to your AI assistant (like Cline), add its configuration to your MCP settings file (e.g., cline_mcp_settings.json).
Find the mcpServers object in your settings file and add the following entry:
{
"mcpServers": {
// ... other server configurations ...
"openai-image-gen-mcp": {
"autoApprove": [
"generate_image",
"edit_image"
],
"disabled": false,
"timeout": 180, // Increased timeout for potentially long image generation
"command": "python", // Or path to python executable if not in PATH
"args": [
// IMPORTANT: Replace this path with the actual absolute path
// to the openai_image_mcp.py file on your system
"C:/path/to/your/cloned/repo/chatgpt-native-image-gen-mcp/openai_image_mcp.py"
],
"env": {
// If using environment variables for the API key:
// "OPENAI_API_KEY": "YOUR_API_KEY_HERE"
},
"transportType": "stdio"
}
// ... other server configurations ...
}
}
Important: Replace C:/path/to/your/cloned/repo/ with the correct absolute path to where you cloned this repository on your machine. Ensure the path separator is correct for your operating system (e.g., use backslashes \ on Windows). If you set the API key via environment variable, you can remove it from the script and potentially add it to the env section here if your MCP client supports it.
Running the Server
You don't typically need to run the server manually. The MCP client (like Cline) will automatically start the server using the command and args specified in the configuration file when one of its tools is called for the first time.
If you want to test it manually (ensure dependencies are installed and API key is available):
python openai_image_mcp.py
Usage
The AI assistant interacts with the server using the generate_image and edit_image tools. Images are saved within an ai-images subdirectory created where the openai_image_mcp.py script is located. The tools return the absolute path to the saved image upon success.
Related Servers
Agentic Tools MCP Companion
A VS Code extension with a GUI for the agentic-tools-mcp server, enhancing task and memory management.
MCP Gemini CLI
Integrate with Google Gemini through its command-line interface (CLI).
MCPunk
Explore and understand codebases through conversation by breaking files into logical chunks for searching and querying without embeddings.
Claude Code MCP
Orchestrates multiple Claude Code agents across iTerm2 sessions, providing centralized management and inter-agent communication.
MCP POC
A proof-of-concept MCP server built with Node.js and TypeScript, compatible with Claude Desktop.
Reference Servers
Reference implementations of Model Context Protocol (MCP) servers in Typescript and Python, showcasing MCP features and SDK usage.
MCP Server Creator
A meta-server for dynamically generating MCP server configurations and Python code.
ASKME-CLI
A command-line interface to prompt users for their next plan or confirmation.
MCP Montano Server
A general-purpose server project built with TypeScript.
MCP SeriesGenerator
A .NET server for generating and validating vehicle serial numbers.