PostgreSQL MCP Server
A server for managing PostgreSQL databases, enabling comprehensive database operations.
PostgreSQL MCP Server
A Model Context Protocol (MCP) server that provides comprehensive PostgreSQL database management capabilities for AI assistants.
Features
š What's New: This server has been completely redesigned from 46 individual tools to 17 intelligent tools through consolidation (34ā8 meta-tools) and enhancement (+4 new tools), providing better AI discovery while adding powerful data manipulation and comment management capabilities.
Quick Start
Prerequisites
- Node.js ā„18.0.0
- Access to a PostgreSQL server
- (Optional) An MCP client like Cursor or Claude for AI integration
Option 1: npm (Recommended)
# Install globally
npm install -g @henkey/postgres-mcp-server
# Or run directly with npx (no installation)
# Use env var for connection string (optional)
export POSTGRES_CONNECTION_STRING="postgresql://user:pass@localhost:5432/db"
npx @henkey/postgres-mcp-server
# Or pass directly:
npx @henkey/postgres-mcp-server --connection-string "postgresql://user:pass@localhost:5432/db"
Verify installation
npx @henkey/postgres-mcp-server --help
Add to your MCP client configuration:
{
"mcpServers": {
"postgresql-mcp": {
"command": "npx",
"args": [
"@henkey/postgres-mcp-server",
"--connection-string", "postgresql://user:password@host:port/database"
]
}
}
}
Option 2: Install via Smithery
npx -y @smithery/cli install @HenkDz/postgresql-mcp-server --client claude
Option 3: Docker (Recommended for Production)
# Build the Docker image
docker build -t postgres-mcp-server .
# Run with environment variable
docker run -i --rm \
-e POSTGRES_CONNECTION_STRING="postgresql://user:password@host:port/database" \
postgres-mcp-server
Add to your MCP client configuration:
{
"mcpServers": {
"postgresql-mcp": {
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"henkey/postgres-mcp:latest",
"-e",
"POSTGRES_CONNECTION_STRING"
],
"env": {
"POSTGRES_CONNECTION_STRING": "postgresql://user:password@host:port/database"
}
}
}
}
Option 4: Manual Installation (Development)
git clone <repository-url>
cd postgresql-mcp-server
npm install
npm run build
Add to your MCP client configuration:
{
"mcpServers": {
"postgresql-mcp": {
"command": "node",
"args": [
"/path/to/postgresql-mcp-server/build/index.js",
"--connection-string", "postgresql://user:password@host:port/database"
]
}
}
}
What's Included
17 powerful tools organized into three categories:
- š Consolidation: 34 original tools consolidated into 8 intelligent meta-tools
- š§ Specialized: 5 tools kept separate for complex operations
- š Enhancement: 4 brand new tools (not in original 46)
š Consolidated Meta-Tools (8 tools)
- Schema Management - Tables, columns, ENUMs, constraints
- User & Permissions - Create users, grant/revoke permissions
- Query Performance - EXPLAIN plans, slow queries, statistics
- Index Management - Create, analyze, optimize indexes
- Functions - Create, modify, manage stored functions
- Triggers - Database trigger management
- Constraints - Foreign keys, checks, unique constraints
- Row-Level Security - RLS policies and management
š Enhancement Tools (4 NEW tools)
Brand new capabilities not available in the original 46 tools
- Execute Query - SELECT operations with count/exists support
- Execute Mutation - INSERT/UPDATE/DELETE/UPSERT operations
- Execute SQL - Arbitrary SQL execution with transaction support
- Comments Management - Comprehensive comment management for all database objects
š§ Specialized Tools (5 tools)
- Database Analysis - Performance and configuration analysis
- Debug Database - Troubleshoot connection, performance, locks
- Data Export/Import - JSON/CSV data migration
- Copy Between Databases - Cross-database data transfer
- Real-time Monitoring - Live database metrics and alerts
Example Usage
// Analyze database performance
{ "analysisType": "performance" }
// Create a table with constraints
{
"operation": "create_table",
"tableName": "users",
"columns": [
{ "name": "id", "type": "SERIAL PRIMARY KEY" },
{ "name": "email", "type": "VARCHAR(255) UNIQUE NOT NULL" }
]
}
// Query data with parameters
{
"operation": "select",
"query": "SELECT * FROM users WHERE created_at > $1",
"parameters": ["2024-01-01"],
"limit": 100
}
// Insert new data
{
"operation": "insert",
"table": "users",
"data": {"name": "John Doe", "email": "john@example.com"},
"returning": "*"
}
// Find slow queries
{
"operation": "get_slow_queries",
"limit": 5,
"minDuration": 100
}
// Execute a parameterized SELECT query
{
"operation": "select",
"query": "SELECT * FROM users WHERE id = $1",
"parameters": [1]
}
// Perform an INSERT mutation
{
"operation": "insert",
"table": "products",
"data": {"name": "New Product", "price": 99.99},
"returning": "id"
}
// Manage database object comments
{
"operation": "set",
"objectType": "table",
"objectName": "users",
"comment": "Main user account information table"
}
š Documentation
š Complete Tool Schema Reference - All 18 tool parameters & examples in one place
For additional information, see the docs/ folder:
- š Usage Guide - Comprehensive tool usage and examples
- š ļø Development Guide - Setup and contribution guide
- āļø Technical Details - Architecture and implementation
- šØāš» Developer Reference - API reference and advanced usage
- š Documentation Index - Complete documentation overview
Features Highlights
š Consolidation Achievements
ā
34ā8 meta-tools - Intelligent consolidation for better AI discovery
ā
Multiple operations per tool - Unified schemas with operation parameters
ā
Smart parameter validation - Clear error messages and type safety
š Enhanced Data Capabilities
ā
Complete CRUD operations - INSERT/UPDATE/DELETE/UPSERT with parameterized queries
ā
Flexible querying - SELECT with count/exists support and safety limits
ā
Arbitrary SQL execution - Transaction support for complex operations
š§ Production Ready
ā
Flexible connection - CLI args, env vars, or per-tool configuration
ā
Security focused - SQL injection prevention, parameterized queries
ā
Robust architecture - Connection pooling, comprehensive error handling
Docker Usage
The PostgreSQL MCP Server is fully Docker-compatible and can be used in production environments.
Building the Image
# Build locally
docker build -t postgres-mcp-server .
# Or pull from Docker Hub
docker pull henkey/postgres-mcp:latest
Running with Environment Variables
# Basic usage (using Docker Hub image)
docker run -i --rm \
-e POSTGRES_CONNECTION_STRING="postgresql://user:password@host:port/database" \
henkey/postgres-mcp:latest
# Or with locally built image
docker run -i --rm \
-e POSTGRES_CONNECTION_STRING="postgresql://user:password@host:port/database" \
postgres-mcp-server
# With tools configuration
docker run -i --rm \
-e POSTGRES_CONNECTION_STRING="postgresql://user:password@host:port/database" \
-e POSTGRES_TOOLS_CONFIG="/app/config/tools.json" \
-v /path/to/config:/app/config \
postgres-mcp-server
Docker Compose Example
version: '3.8'
services:
postgres-mcp:
build: .
environment:
- POSTGRES_CONNECTION_STRING=postgresql://user:password@postgres:5432/database
depends_on:
- postgres
stdin_open: true
tty: true
postgres:
image: postgres:15
environment:
- POSTGRES_DB=database
- POSTGRES_USER=user
- POSTGRES_PASSWORD=password
ports:
- "5432:5432"
MCP Client Configuration
For use with MCP clients like Cursor or Claude Desktop:
{
"mcpServers": {
"postgresql-mcp": {
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"henkey/postgres-mcp:latest",
"-e",
"POSTGRES_CONNECTION_STRING"
],
"env": {
"POSTGRES_CONNECTION_STRING": "postgresql://user:password@host:port/database"
}
}
}
}
Prerequisites
- Node.js ā„ 18.0.0 (for local development)
- Docker (for containerized deployment)
- PostgreSQL server access
- Valid connection credentials
Contributing
- Fork the repository
- Create a feature branch
- Commit your changes
- Create a Pull Request
See Development Guide for detailed setup instructions.
License
AGPLv3 License - see LICENSE file for details.
Related Servers
Snowflake Cortex
An experimental MCP server to access Snowflake Cortex insights from your development environment.
MongoDB
Interact with MongoDB databases using natural language to query collections, inspect schemas, and manage data.
ParticlePhysics MCP Server
Provides seamless access to particle physics data from the Particle Data Group (PDG) for AI assistants and applications.
Quanti: connectors MCP
Unify your marketing team around one AI-powered source of truth. Quanti connects your marketing data to your warehouse. Execute SQL queries on BigQuery, explore table schemas, discover pre-built use cases, and analyze performance across Google Analytics, Google Ads, Meta Ads, TikTok, affiliate networks and more. all through natural conversation
MySQL MCP Server
Provides access to a MySQL database, allowing agents to execute SQL queries.
NocoDB MCP Server
An MCP server for NocoDB, the open-source Airtable alternative. It allows interaction with your NocoDB instance via API.
ChatQL MCP Server
Query SQL Server databases using natural language with OpenAI GPT models.
Apache Gravitino
Access Apache Gravitino, a high-performance, federated metadata lake for data and AI.
SET-MCP
Access financial statements, including income, balance sheets, and cash flow, for companies listed on the Securities Exchange of Thailand (SET).
Doris-MCP-Lite
A lightweight MCP server for connecting to Apache Doris and other MySQL-compatible databases, providing tools and prompts for LLM applications.