Multi Database MCP Server
An MCP server that provides AI assistants with structured access to multiple databases simultaneously.
Multi Database MCP Server
Overview
The DB MCP Server provides a standardized way for AI models to interact with multiple databases simultaneously. Built on the FreePeak/cortex framework, it enables AI assistants to execute SQL queries, manage transactions, explore schemas, and analyze performance across different database systems through a unified interface.
Core Concepts
Multi-Database Support
Unlike traditional database connectors, DB MCP Server can connect to and interact with multiple databases concurrently:
{
"connections": [
{
"id": "mysql1",
"type": "mysql",
"host": "localhost",
"port": 3306,
"name": "db1",
"user": "user1",
"password": "password1"
},
{
"id": "postgres1",
"type": "postgres",
"host": "localhost",
"port": 5432,
"name": "db2",
"user": "user2",
"password": "password2"
}
]
}
Dynamic Tool Generation
For each connected database, the server automatically generates specialized tools:
// For a database with ID "mysql1", these tools are generated:
query_mysql1 // Execute SQL queries
execute_mysql1 // Run data modification statements
transaction_mysql1 // Manage transactions
schema_mysql1 // Explore database schema
performance_mysql1 // Analyze query performance
Clean Architecture
The server follows Clean Architecture principles with these layers:
- Domain Layer: Core business entities and interfaces
- Repository Layer: Data access implementations
- Use Case Layer: Application business logic
- Delivery Layer: External interfaces (MCP tools)
Features
- Simultaneous Multi-Database Support: Connect to multiple MySQL and PostgreSQL databases concurrently
- Database-Specific Tool Generation: Auto-creates specialized tools for each connected database
- Clean Architecture: Modular design with clear separation of concerns
- OpenAI Agents SDK Compatibility: Full compatibility for seamless AI assistant integration
- Dynamic Database Tools: Execute queries, run statements, manage transactions, explore schemas, analyze performance
- Unified Interface: Consistent interaction patterns across different database types
- Connection Management: Simple configuration for multiple database connections
Supported Databases
| Database | Status | Features |
|---|---|---|
| MySQL | ✅ Full Support | Queries, Transactions, Schema Analysis, Performance Insights |
| PostgreSQL | ✅ Full Support (v9.6-17) | Queries, Transactions, Schema Analysis, Performance Insights |
| TimescaleDB | ✅ Full Support | Hypertables, Time-Series Queries, Continuous Aggregates, Compression, Retention Policies |
Deployment Options
The DB MCP Server can be deployed in multiple ways to suit different environments and integration needs:
Docker Deployment
# Pull the latest image
docker pull freepeak/db-mcp-server:latest
# Run with mounted config file
docker run -p 9092:9092 \
-v $(pwd)/config.json:/app/my-config.json \
-e TRANSPORT_MODE=sse \
-e CONFIG_PATH=/app/my-config.json \
freepeak/db-mcp-server
Note: Mount to
/app/my-config.jsonas the container has a default file at/app/config.json.
STDIO Mode (IDE Integration)
# Run the server in STDIO mode
./bin/server -t stdio -c config.json
For Cursor IDE integration, add to .cursor/mcp.json:
{
"mcpServers": {
"stdio-db-mcp-server": {
"command": "/path/to/db-mcp-server/server",
"args": ["-t", "stdio", "-c", "/path/to/config.json"]
}
}
}
SSE Mode (Server-Sent Events)
# Default configuration (localhost:9092)
./bin/server -t sse -c config.json
# Custom host and port
./bin/server -t sse -host 0.0.0.0 -port 8080 -c config.json
Client connection endpoint: http://localhost:9092/sse
Source Code Installation
# Clone the repository
git clone https://github.com/FreePeak/db-mcp-server.git
cd db-mcp-server
# Build the server
make build
# Run the server
./bin/server -t sse -c config.json
Configuration
Database Configuration File
Create a config.json file with your database connections:
{
"connections": [
{
"id": "mysql1",
"type": "mysql",
"host": "mysql1",
"port": 3306,
"name": "db1",
"user": "user1",
"password": "password1",
"query_timeout": 60,
"max_open_conns": 20,
"max_idle_conns": 5,
"conn_max_lifetime_seconds": 300,
"conn_max_idle_time_seconds": 60
},
{
"id": "postgres1",
"type": "postgres",
"host": "postgres1",
"port": 5432,
"name": "db1",
"user": "user1",
"password": "password1"
}
]
}
Command-Line Options
# Basic syntax
./bin/server -t <transport> -c <config-file>
# SSE transport options
./bin/server -t sse -host <hostname> -port <port> -c <config-file>
# Inline database configuration
./bin/server -t stdio -db-config '{"connections":[...]}'
# Environment variable configuration
export DB_CONFIG='{"connections":[...]}'
./bin/server -t stdio
Available Tools
For each connected database, DB MCP Server automatically generates these specialized tools:
Query Tools
| Tool Name | Description |
|---|---|
query_<db_id> | Execute SELECT queries and get results as a tabular dataset |
execute_<db_id> | Run data manipulation statements (INSERT, UPDATE, DELETE) |
transaction_<db_id> | Begin, commit, and rollback transactions |
Schema Tools
| Tool Name | Description |
|---|---|
schema_<db_id> | Get information about tables, columns, indexes, and foreign keys |
generate_schema_<db_id> | Generate SQL or code from database schema |
Performance Tools
| Tool Name | Description |
|---|---|
performance_<db_id> | Analyze query performance and get optimization suggestions |
TimescaleDB Tools
For PostgreSQL databases with TimescaleDB extension, these additional specialized tools are available:
| Tool Name | Description |
|---|---|
timescaledb_<db_id> | Perform general TimescaleDB operations |
create_hypertable_<db_id> | Convert a standard table to a TimescaleDB hypertable |
list_hypertables_<db_id> | List all hypertables in the database |
time_series_query_<db_id> | Execute optimized time-series queries with bucketing |
time_series_analyze_<db_id> | Analyze time-series data patterns |
continuous_aggregate_<db_id> | Create materialized views that automatically update |
refresh_continuous_aggregate_<db_id> | Manually refresh continuous aggregates |
For detailed documentation on TimescaleDB tools, see TIMESCALEDB_TOOLS.md.
Examples
Querying Multiple Databases
-- Query the first database
query_mysql1("SELECT * FROM users LIMIT 10")
-- Query the second database in the same context
query_postgres1("SELECT * FROM products WHERE price > 100")
Managing Transactions
-- Start a transaction
transaction_mysql1("BEGIN")
-- Execute statements within the transaction
execute_mysql1("INSERT INTO orders (customer_id, product_id) VALUES (1, 2)")
execute_mysql1("UPDATE inventory SET stock = stock - 1 WHERE product_id = 2")
-- Commit or rollback
transaction_mysql1("COMMIT")
-- OR
transaction_mysql1("ROLLBACK")
Exploring Database Schema
-- Get all tables in the database
schema_mysql1("tables")
-- Get columns for a specific table
schema_mysql1("columns", "users")
-- Get constraints
schema_mysql1("constraints", "orders")
Troubleshooting
Common Issues
- Connection Failures: Verify network connectivity and database credentials
- Permission Errors: Ensure the database user has appropriate permissions
- Timeout Issues: Check the
query_timeoutsetting in your configuration
Logs
Enable verbose logging for troubleshooting:
./bin/server -t sse -c config.json -v
Contributing
We welcome contributions to the DB MCP Server project! To contribute:
- Fork the repository
- Create a feature branch (
git checkout -b feature/amazing-feature) - Commit your changes (
git commit -m 'feat: add amazing feature') - Push to the branch (
git push origin feature/amazing-feature) - Open a Pull Request
Please see our CONTRIBUTING.md file for detailed guidelines.
License
This project is licensed under the MIT License - see the LICENSE file for details.
Related Servers
CData MySQL MCP Server
A read-only MCP server for MySQL, enabling LLMs to query live data using the CData JDBC Driver.
Supabase
Access and manage your Supabase projects through the Model Context Protocol (MCP).
MCP Data Visualization Server
Generate interactive data visualizations from natural language queries on a DuckDB database.
qmcp Server
An MCP server for integrating with and querying q/kdb+ databases.
NFTGo MCP
Access the NFTGo Developer API for comprehensive NFT data and analytics. Requires an NFTGo API key.
FOCUS DATA MCP Server
Convert natural language into SQL statements with a two-step generation solution to reduce hallucinations and improve trust.
DBHub
Universal database MCP server supporting mainstream databases.
Qdrant Memory
A knowledge graph implementation with semantic search powered by the Qdrant vector database.
Advanced Memory Bank MCP
An intelligent memory management server with 14 optimized tools. It provides AI-powered summaries, a clean interface, and supports an optional PostgreSQL database with pgvector.
GreptimeDB
Provides AI assistants with a secure and structured way to explore and analyze data in GreptimeDB.