Integrates with Microsoft's AutoGen framework to enable sophisticated multi-agent conversations via the Model Context Protocol.
A comprehensive MCP server that provides deep integration with Microsoft's AutoGen framework v0.9+, featuring the latest capabilities including prompts, resources, advanced workflows, and enhanced agent types. This server enables sophisticated multi-agent conversations through a standardized Model Context Protocol interface.
create_agent
- Create agents with advanced configurationscreate_workflow
- Build complete multi-agent workflowsget_agent_status
- Detailed agent metrics and health monitoringexecute_chat
- Enhanced two-agent conversationsexecute_group_chat
- Multi-agent group discussionsexecute_nested_chat
- Hierarchical conversation structuresexecute_swarm
- Swarm-based collaborative problem solvingexecute_workflow
- Run predefined workflow templatesmanage_agent_memory
- Handle agent learning and persistenceconfigure_teachability
- Enable/configure agent learning capabilitiesautogen-workflow
Create sophisticated multi-agent workflows with customizable parameters:
task_description
, agent_count
, workflow_type
code-review
Set up collaborative code review with specialized agents:
code
, language
, focus_areas
research-analysis
Deploy research teams for in-depth topic analysis:
topic
, depth
autogen://agents/list
Live list of active agents with status and capabilities
autogen://workflows/templates
Available workflow templates and configurations
autogen://chat/history
Recent conversation history and interaction logs
autogen://config/current
Current server configuration and settings
To install AutoGen Server for Claude Desktop automatically via Smithery:
npx -y @smithery/cli install @DynamicEndpoints/autogen_mcp --client claude
git clone https://github.com/yourusername/autogen-mcp.git
cd autogen-mcp
npm install
pip install -r requirements.txt --user
npm run build
cp .env.example .env
cp config.json.example config.json
# Edit .env and config.json with your settings
Create a .env
file from the template:
# Required
OPENAI_API_KEY=your-openai-api-key-here
# Optional - Path to configuration file
AUTOGEN_MCP_CONFIG=config.json
# Enhanced Features
ENABLE_PROMPTS=true
ENABLE_RESOURCES=true
ENABLE_WORKFLOWS=true
ENABLE_TEACHABILITY=true
# Performance Settings
MAX_CHAT_TURNS=10
DEFAULT_OUTPUT_FORMAT=json
Update config.json
with your preferences:
{
"llm_config": {
"config_list": [
{
"model": "gpt-4o",
"api_key": "your-openai-api-key"
}
],
"temperature": 0.7
},
"enhanced_features": {
"prompts": { "enabled": true },
"resources": { "enabled": true },
"workflows": { "enabled": true }
}
}
Add to your claude_desktop_config.json
:
{
"mcpServers": {
"autogen": {
"command": "node",
"args": ["path/to/autogen-mcp/build/index.js"],
"env": {
"OPENAI_API_KEY": "your-key-here"
}
}
}
}
Test the server functionality:
# Run comprehensive tests
python test_server.py
# Test CLI interface
python cli_example.py create_agent "researcher" "assistant" "You are a research specialist"
python cli_example.py execute_workflow "code_generation" '{"task":"Hello world","language":"python"}'
The server provides several built-in prompts:
Available resources provide real-time data:
autogen://agents/list
- Current active agentsautogen://workflows/templates
- Available workflow templatesautogen://chat/history
- Recent conversation historyautogen://config/current
- Server configuration{
"workflow_name": "code_generation",
"input_data": {
"task": "Create a REST API endpoint",
"language": "python",
"requirements": ["FastAPI", "Pydantic", "Error handling"]
},
"quality_checks": true
}
{
"workflow_name": "research",
"input_data": {
"topic": "AI Ethics in 2025",
"depth": "comprehensive"
},
"output_format": "markdown"
}
pip install -r requirements.txt --user
npm install
Enable detailed logging:
export LOG_LEVEL=DEBUG
python test_server.py
gpt-4o-mini
for faster, cost-effective operations# Full test suite
python test_server.py
# Individual workflow tests
python -c "
import asyncio
from src.autogen_mcp.workflows import WorkflowManager
wm = WorkflowManager()
print(asyncio.run(wm.execute_workflow('code_generation', {'task': 'test'})))
"
npm run build
npm run lint
For issues and questions:
test_server.py
MIT License - see LICENSE file for details.
OPENAI_API_KEY=your-openai-api-key
### Server Configuration
1. Copy `config.json.example` to `config.json`:
```bash
cp config.json.example config.json
{
"llm_config": {
"config_list": [
{
"model": "gpt-4",
"api_key": "your-openai-api-key"
}
],
"temperature": 0
},
"code_execution_config": {
"work_dir": "workspace",
"use_docker": false
}
}
The server supports three main operations:
{
"name": "create_agent",
"arguments": {
"name": "tech_lead",
"type": "assistant",
"system_message": "You are a technical lead with expertise in software architecture and design patterns."
}
}
{
"name": "execute_chat",
"arguments": {
"initiator": "agent1",
"responder": "agent2",
"message": "Let's discuss the system architecture."
}
}
{
"name": "execute_group_chat",
"arguments": {
"agents": ["agent1", "agent2", "agent3"],
"message": "Let's review the proposed solution."
}
}
Common error scenarios include:
{
"error": "Agent already exists"
}
{
"error": "Agent not found"
}
{
"error": "AUTOGEN_MCP_CONFIG environment variable not set"
}
The server follows a modular architecture:
src/
āāā autogen_mcp/
ā āāā __init__.py
ā āāā agents.py # Agent management and configuration
ā āāā config.py # Configuration handling and validation
ā āāā server.py # MCP server implementation
ā āāā workflows.py # Conversation workflow management
MIT License - See LICENSE file for details
An MCP server for the DeepSeek API, providing code review, file management, and account management.
A MCP Server that enhance your IDE with AI-powered assistance for Intlayer i18n / CMS tool: smart CLI access, versioned docs.
Turns any command-line interface (CLI) command into a simple StdIO-based MCP server.
A structured development workflow for LLM-based coding, including feature clarification, planning, phased development, and progress tracking.
A specialized MCP gateway for LLM enhancement prompts and jailbreaks with dynamic schema adaptation. Provides prompts for different LLMs using an enum-based approach.
Interact with TestRail's core entities such as test cases, runs, and results using a standardized protocol.
A secure MCP server for executing terminal commands with controlled directory access and command permissions.
Interact with the Futarchy protocol on the Solana blockchain.
An MCP server providing searchable access to multiple AI/ML SDK documentation and source code.
Search for Docker images and retrieve their READMEs and metadata from Docker Hub.