TCC
Automatically generates MCP servers from OpenAPI specifications, enabling conversational AI agents to interact with existing web systems.
TCC - Transformando APIs em Interfaces Conversacionais
Validação da Abordagem OpenAPI-MCP para Agentes Baseados em IA
Trabalho de Conclusão de Curso - Engenharia de Software
Autor: Lucas de Castro Zanoni | Orientador: Thyerri Fernandes Mezzari
Instituição: Centro Universitário UniSATC
🤖 Como Funciona o Sistema?
- O usuário escreve algo como “quero buscar o equipamento 123”.
- O modelo de linguagem entende a intenção.
- A intenção é convertida pelo modelo de linguagem em chamadas de função.
- A chamada de função é convertida em chamada de ferramentas MCP.
- O cliente via protocolo MCP chama as ferramentas correspondentes a intenção do usuároo.
- Nos servidores MCP a chamada é transformada em uma requisição HTTP real com base na especificação SWAGGER da aplicação destino.
- A resposta da API é formatada e enviada de volta ao modelo de linguagem que interpreta e responde, como se fosse um bate-papo.
🎥 Demonstração
📖 Navegação Rápida
| 🎯 Seu Objetivo | 📋 Comece Aqui | ⏱️ Tempo |
|---|---|---|
| Entender a pesquisa | 📚 Guia Rápido - Acadêmico | 5-15 min |
| Usar a ferramenta | 💻 Guia Rápido - Desenvolvedor | 5-10 min |
| Reproduzir experimentos | 🔬 Guia Rápido - Pesquisador | 20 min |
| Avaliar comercialmente | 🏢 Guia Rápido - Empresa | 15 min |
| Navegar documentação | 📚 Índice Completo | Referência |
📖 Sobre a Pesquisa
Este TCC investiga como especificações OpenAPI podem ser automaticamente convertidas em servidores MCP (Model Context Protocol), permitindo que modelos de linguagem de grande escala (LLMs) interajam com sistemas existentes através de interfaces conversacionais naturais.
🎯 Problema de Pesquisa
"Como a combinação da especificação OpenAPI com o protocolo MCP pode facilitar a integração eficiente e segura de agentes conversacionais baseados em IA com sistemas web existentes, contribuindo para a democratização do acesso a tecnologias complexas?"
🎯 Principais Objetivos
- Desenvolver um gerador automático de servidores MCP a partir de especificações OpenAPI
- Implementar um cliente de chat capaz de gerenciar múltiplos servidores MCP simultaneamente
- Validar a abordagem através de testes experimentais rigorosos
- Avaliar desempenho, segurança e experiência do usuário
🏆 Principais Contribuições Científicas
✅ Resultados Experimentais Validados
| Métrica | Resultado | Observações |
|---|---|---|
| Conversão OpenAPI→MCP | 100% sucesso (10/10 endpoints) | Automação completa |
| Taxa de Sucesso Operacional | 100% (8/8 consultas) | Robustez funcional |
| Experiência do Usuário | 4.0/5.0 | Satisfação geral |
| Proteção de Segurança | 100% (16/16 ataques bloqueados) | Resistência a ataques básicos |
| Tempo de Resposta Médio | 3.757ms | Variação: 1.335-5.823ms |
🔬 Inovações Técnicas
- Geração Automática de Ferramentas MCP: Conversão sistemática OpenAPI→MCP
- Orquestração Multi-Servidor: Coordenação inteligente de múltiplos servidores MCP
- Integração Padronizada: Ponte entre LLMs e APIs existentes
- Metodologia Reproduzível: Framework experimental com métricas objetivas
🏗️ Arquitetura da Solução
graph TB
UI[Interface do Usuário]
CI[Chat Interface]
AC[Agente Conversacional]
LLM[LLM]
AI[Analisador de Intenção]
VR[Validador de Requisição]
FR[Formatador de Resposta]
CamInt[Camada de Integração]
MCP[Servidor MCP]
Backend[Sistemas de Backend]
APIs[APIs Externas]
UI --> CI
CI --> AC
AC -.-> |Consulta do Usuário| LLM
LLM -.-> |Resposta em Linguagem Natural| AC
LLM --> |Intenção Estruturada| AI
AI --> VR
VR -.-> |Requisição Validada| CamInt
LLM --> |Resposta Formatada| FR
FR --> AC
CamInt --> MCP
MCP --> |Requisição HTTP| Backend
Backend --> APIs
APIs -.-> |Resultado da Operação| Backend
Backend -.-> MCP
MCP -.-> CamInt
🧩 Componentes Principais
1. Gerador Automático de Servidores MCP (mcp-openapi-server/)
- Análise Sintática: Parser e validação de especificações OpenAPI 3.0+
- Mapeamento Semântico: Conversão inteligente OpenAPI → ferramentas MCP
- Geração de Ferramentas: Criação automática de servidores MCP funcionais
- Transporte Dual: Suporte para stdio e HTTP
2. Cliente de Chat Multi-Servidor (chat-client/)
- Interface Minimalista: Design padronizado para testes objetivos
- Coordenação Distribuída: Gerenciamento de múltiplos servidores MCP
- Descoberta Automática: Identificação dinâmica de ferramentas disponíveis
- Testes E2E: Suite completa com Playwright
3. Aplicações de Teste (equipments-dummy-app/ & professionals-dummy-app/)
- APIs RESTful: Implementações com Hono.js, TypeScript e PostgreSQL
- Documentação OpenAPI: Especificações completas para validação
- Cenários Reais: Simulação de sistemas empresariais
4. Framework de Validação
- Testes Automatizados: Métricas de performance, segurança e UX
- Red Teaming: Testes adversários para validação de segurança
- Instrumentação: Coleta objetiva de dados experimentais
📚 Documentação Acadêmica
📄 Artigo Completo
- 📖 Artigo Principal - Documento completo em PDF
- 📝 Fonte Markdown - Texto fonte em Markdown
- 📚 Referências - Bibliografia em BibTeX
📋 Documentação de Pesquisa
- 🎯 Pré-Projeto - Objetivos, problema e justificativa
- 📖 Notas de Desenvolvimento - Anotações e ideias durante o desenvolvimento
- 💡 Ideias de Tema - Processo de escolha e refinamento do tema
- 🔖 Bookmarks - Links de pesquisa organizados
🔬 Metodologia Científica
- Abordagem Experimental: Validação empírica com controle de variáveis
- Métricas Objetivas: Performance, segurança e experiência do usuário
- Testes Reproduzíveis: Framework automatizado para validação
- Análise Estatística: Dados quantitativos com intervalos de confiança
🔄 Workflow de Desenvolvimento Acadêmico
📝 Por que este Workflow?
Este TCC foi desenvolvido seguindo um workflow orientado a código e versionamento, com várias vantagens:
- 📚 Versionamento Completo: Todo conteúdo (código + texto acadêmico) versionado com Git
- ✍️ Markdown + LaTeX: Facilidade de escrita + poder de formatação acadêmica
- 🔗 Gestão de Referências: BibTeX para consistência bibliográfica
- ⚙️ Automação: Scripts para conversão Markdown → LaTeX → PDF
- 🔧 Integração: Código e documentação no mesmo repositório
- 🔁 Reprodutibilidade: Qualquer pessoa pode reproduzir o ambiente
- 👥 Colaboração: Formato texto facilita revisões e sugestões
📁 Estrutura do Projeto
TCC/
├── 📄 README.md # Este arquivo
├── 📄 pre-projeto.md # Proposta inicial da pesquisa
├── 📄 CITATION.md # Formatos de citação
├── 📄 DOCUMENTATION_INDEX.md # Índice completo da documentação
├── 📄 QUICK_START.md # Guias de início rápido
├── 📄 RESEARCH_SUMMARY.md # Resumo executivo da pesquisa
├── 🛠️ Makefile # Comandos de automação
│
├── 📚 article/ # Documentação acadêmica
│ ├── 📖 article.md # Artigo principal (fonte)
│ ├── 📄 article.pdf # Artigo final compilado
│ ├── 📚 references.bib # Referências bibliográficas
│ ├── 🖼️ images/ # Figuras e diagramas
│ └── ⚙️ Makefile # Compilação LaTeX
│
├── 🤖 mcp-openapi-server/ # Gerador automático MCP
│ ├── 📦 package.json # Dependências e scripts
│ ├── 🔧 src/ # Código fonte
│ ├── 🧪 test/ # Testes unitários
│ └── 📖 README.md # Documentação técnica
│
├── 💬 chat-client/ # Cliente multi-servidor
│ ├── 🌐 chat.html # Interface web
│ ├── ⚙️ backend-server.js # Servidor backend
│ ├── 📦 package.json # Scripts específicos do sistema
│ ├── 🧪 tests/ # Testes E2E (Playwright)
│ └── 📊 test-results/ # Resultados experimentais
│
├── 🏭 equipments-dummy-app/ # App teste - Equipamentos
│ ├── 📦 package.json # Scripts e dependências
│ └── 🔧 src/ # API REST Hono.js + TypeScript
│
├── 👥 professionals-dummy-app/ # App teste - Profissionais
│ ├── 📦 package.json # Scripts e dependências
│ └── 🔧 src/ # API REST Hono.js + TypeScript
│
└── 🔖 bookmarks/ # Pesquisa organizada
├── 📚 bookmarks.json # Links de referência
└── 💾 save-bookmarks.sh # Script de backup
📚 Citação Acadêmica
📄 BibTeX Format
@mastersthesis{zanoni2025openapi,
title = {Transformando APIs em Interfaces Conversacionais: Validação da Abordagem OpenAPI-MCP para Agentes Baseados em IA},
author = {Zanoni, Lucas de Castro},
school = {Centro Universitário UniSATC},
year = {2025},
type = {Trabalho de Conclusão de Curso},
program = {Engenharia de Software},
address = {Criciúma, SC, Brasil},
url = {https://github.com/Castrozan/TCC}
}
📋 Outros formatos (ABNT, APA, IEEE): CITATION.md
👤 Autor & Contato
Lucas de Castro Zanoni
📧 castro [dot] lucas290 [at] gmail [dot] com
🐙 @Castrozan
🎓 Graduando em Engenharia de Software - UniSATC
Orientador: Prof. Thyerri Fernandes Mezzari
📧 thyerri [dot] mezzari [at] satc [dot] edu [dot] br
📄 Licença
Este projeto está sob a licença MIT. Veja o arquivo LICENSE para detalhes.
Related Servers
Scout Monitoring MCP
sponsorPut performance and error data directly in the hands of your AI assistant.
Alpha Vantage MCP Server
sponsorAccess financial market data: realtime & historical stock, ETF, options, forex, crypto, commodities, fundamentals, technical indicators, & more
Grey Hack MCP Server
A Grey Hack server for Cursor IDE, providing GitHub code search, Greybel-JS transpilation, API validation, and script generation.
MCP SBOM Server
Performs a Trivy scan to produce a Software Bill of Materials (SBOM) in CycloneDX format.
Kirha MCP Gateway
An MCP server that provides seamless access to Kirha AI tools.
Memory Bank MCP
An AI-assisted development plugin that maintains persistent project context using structured markdown files for goals, decisions, and progress.
MCP Resources
Provides MCP server configurations for accessing the Brave Search and GitHub APIs.
mcp-of-mcps
MCP of MCPs is a meta-server that merges all your MCP servers into a single smart endpoint. It gives AI agents instant tool discovery, selective schema loading, and massively cheaper execution, so you stop wasting tokens and time. With persistent tool metadata, semantic search, and direct code execution between tools, it turns chaotic multi-server setups into a fast, efficient, hallucination-free workflow. It also automatically analyzes the tools output schemas if not exist and preserves them across sessions for consistent behavior.
MCP Audio Inspector
Analyzes audio files and extracts metadata, tailored for game audio development workflows.
OTP MCP Server
Generates secure One-Time Passwords (OTP) using TOTP and HOTP algorithms.
MCP Lab
A development environment for building and testing custom MCP servers with AI and VS Code integration.
APIWeaver
Dynamically creates MCP servers from web API configurations, integrating any REST API, GraphQL endpoint, or web service into MCP-compatible tools.