Building Cloudflare Agentsby Cloudflare
Builds AI agents on Cloudflare using the Agents SDK with state management, real-time WebSockets, scheduled tasks, tool integration, and chat capabilities. Generates production-ready agent code deployed to Workers. Use when: user wants to "build an agent", "AI agent", "chat agent", "stateful agent", mentions "Agents SDK", needs "real-time AI", "WebSocket AI", or asks about agent "state management", "scheduled tasks", or "tool calling".
Building Cloudflare Agents
Creates AI-powered agents using Cloudflare's Agents SDK with persistent state, real-time communication, and tool integration.
When to Use
- User wants to build an AI agent or chatbot
- User needs stateful, real-time AI interactions
- User asks about the Cloudflare Agents SDK
- User wants scheduled tasks or background AI work
- User needs WebSocket-based AI communication
Prerequisites
- Cloudflare account with Workers enabled
- Node.js 18+ and npm/pnpm/yarn
- Wrangler CLI (
npm install -g wrangler)
Quick Start
npm create cloudflare@latest -- my-agent --template=cloudflare/agents-starter
cd my-agent
npm start
Agent runs at http://localhost:8787
Core Concepts
What is an Agent?
An Agent is a stateful, persistent AI service that:
- Maintains state across requests and reconnections
- Communicates via WebSockets or HTTP
- Runs on Cloudflare's edge via Durable Objects
- Can schedule tasks and call tools
- Scales horizontally (each user/session gets own instance)
Agent Lifecycle
Client connects → Agent.onConnect() → Agent processes messages
→ Agent.onMessage()
→ Agent.setState() (persists + syncs)
Client disconnects → State persists → Client reconnects → State restored
Basic Agent Structure
import { Agent, Connection } from "agents";
interface Env {
AI: Ai; // Workers AI binding
}
interface State {
messages: Array<{ role: string; content: string }>;
preferences: Record<string, string>;
}
export class MyAgent extends Agent<Env, State> {
// Initial state for new instances
initialState: State = {
messages: [],
preferences: {},
};
// Called when agent starts or resumes
async onStart() {
console.log("Agent started with state:", this.state);
}
// Handle WebSocket connections
async onConnect(connection: Connection) {
connection.send(JSON.stringify({
type: "welcome",
history: this.state.messages,
}));
}
// Handle incoming messages
async onMessage(connection: Connection, message: string) {
const data = JSON.parse(message);
if (data.type === "chat") {
await this.handleChat(connection, data.content);
}
}
// Handle disconnections
async onClose(connection: Connection) {
console.log("Client disconnected");
}
// React to state changes
onStateUpdate(state: State, source: string) {
console.log("State updated by:", source);
}
private async handleChat(connection: Connection, userMessage: string) {
// Add user message to history
const messages = [
...this.state.messages,
{ role: "user", content: userMessage },
];
// Call AI
const response = await this.env.AI.run("@cf/meta/llama-3-8b-instruct", {
messages,
});
// Update state (persists and syncs to all clients)
this.setState({
...this.state,
messages: [
...messages,
{ role: "assistant", content: response.response },
],
});
// Send response
connection.send(JSON.stringify({
type: "response",
content: response.response,
}));
}
}
Entry Point Configuration
// src/index.ts
import { routeAgentRequest } from "agents";
import { MyAgent } from "./agent";
export default {
async fetch(request: Request, env: Env) {
// routeAgentRequest handles routing to /agents/:class/:name
return (
(await routeAgentRequest(request, env)) ||
new Response("Not found", { status: 404 })
);
},
};
export { MyAgent };
Clients connect via: wss://my-agent.workers.dev/agents/MyAgent/session-id
Wrangler Configuration
name = "my-agent"
main = "src/index.ts"
compatibility_date = "2024-12-01"
[ai]
binding = "AI"
[durable_objects]
bindings = [{ name = "AGENT", class_name = "MyAgent" }]
[[migrations]]
tag = "v1"
new_classes = ["MyAgent"]
State Management
Reading State
// Current state is always available
const currentMessages = this.state.messages;
const userPrefs = this.state.preferences;
Updating State
// setState persists AND syncs to all connected clients
this.setState({
...this.state,
messages: [...this.state.messages, newMessage],
});
// Partial updates work too
this.setState({
preferences: { ...this.state.preferences, theme: "dark" },
});
SQL Storage
For complex queries, use the embedded SQLite database:
// Create tables
await this.sql`
CREATE TABLE IF NOT EXISTS documents (
id INTEGER PRIMARY KEY AUTOINCREMENT,
title TEXT NOT NULL,
content TEXT,
created_at DATETIME DEFAULT CURRENT_TIMESTAMP
)
`;
// Insert
await this.sql`
INSERT INTO documents (title, content)
VALUES (${title}, ${content})
`;
// Query
const docs = await this.sql`
SELECT * FROM documents WHERE title LIKE ${`%${search}%`}
`;
Scheduled Tasks
Agents can schedule future work:
async onMessage(connection: Connection, message: string) {
const data = JSON.parse(message);
if (data.type === "schedule_reminder") {
// Schedule task for 1 hour from now
const { id } = await this.schedule(3600, "sendReminder", {
message: data.reminderText,
userId: data.userId,
});
connection.send(JSON.stringify({ type: "scheduled", taskId: id }));
}
}
// Called when scheduled task fires
async sendReminder(data: { message: string; userId: string }) {
// Send notification, email, etc.
console.log(`Reminder for ${data.userId}: ${data.message}`);
// Can also update state
this.setState({
...this.state,
lastReminder: new Date().toISOString(),
});
}
Schedule Options
// Delay in seconds
await this.schedule(60, "taskMethod", { data });
// Specific date
await this.schedule(new Date("2025-01-01T00:00:00Z"), "taskMethod", { data });
// Cron expression (recurring)
await this.schedule("0 9 * * *", "dailyTask", {}); // 9 AM daily
await this.schedule("*/5 * * * *", "everyFiveMinutes", {}); // Every 5 min
// Manage schedules
const schedules = await this.getSchedules();
await this.cancelSchedule(taskId);
Chat Agent (AI-Powered)
For chat-focused agents, extend AIChatAgent:
import { AIChatAgent } from "agents/ai-chat-agent";
export class ChatBot extends AIChatAgent<Env> {
// Called for each user message
async onChatMessage(message: string) {
const response = await this.env.AI.run("@cf/meta/llama-3-8b-instruct", {
messages: [
{ role: "system", content: "You are a helpful assistant." },
...this.messages, // Automatic history management
{ role: "user", content: message },
],
stream: true,
});
// Stream response back to client
return response;
}
}
Features included:
- Automatic message history
- Resumable streaming (survives disconnects)
- Built-in
saveMessages()for persistence
Client Integration
React Hook
import { useAgent } from "agents/react";
function Chat() {
const { state, send, connected } = useAgent({
agent: "my-agent",
name: userId, // Agent instance ID
});
const sendMessage = (text: string) => {
send(JSON.stringify({ type: "chat", content: text }));
};
return (
<div>
{state.messages.map((msg, i) => (
<div key={i}>{msg.role}: {msg.content}</div>
))}
<input onKeyDown={(e) => e.key === "Enter" && sendMessage(e.target.value)} />
</div>
);
}
Vanilla JavaScript
const ws = new WebSocket("wss://my-agent.workers.dev/agents/MyAgent/user123");
ws.onopen = () => {
console.log("Connected to agent");
};
ws.onmessage = (event) => {
const data = JSON.parse(event.data);
console.log("Received:", data);
};
ws.send(JSON.stringify({ type: "chat", content: "Hello!" }));
Common Patterns
See references/agent-patterns.md for:
- Tool calling and function execution
- Multi-agent orchestration
- RAG (Retrieval Augmented Generation)
- Human-in-the-loop workflows
Deployment
# Deploy
npx wrangler deploy
# View logs
wrangler tail
# Test endpoint
curl https://my-agent.workers.dev/agents/MyAgent/test-user
Troubleshooting
See references/troubleshooting.md for common issues.
References
- references/examples.md — Official templates and production examples
- references/agent-patterns.md — Advanced patterns
- references/state-patterns.md — State management strategies
- references/troubleshooting.md — Error solutions